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ABSTRACT
Robust evidence on the existence of the Columbia (Nuna) supercontinent's internal ocean—the Ironian 

Ocean (name proposed here for the first time)—has been compiled from scientific literature. Remnants of Supe-
rior-type banded iron formations suggest the 2.5–2.2 Ga ocean spreading stage, as well as eclogites, blueschists, 
oceanic plateau, eclogite xenolith and ophiolites point to 2.2–1.8 Ga ocean closure stage along its suture zone. The 
2.10–1.95 Ga collisional orogens of the Columbia (Nuna) supercontinent would have been formed throughout 
impact of continental lithospheric fragments during the consumption of the Ironian internal ocean by introver-
sion process developed in the formation of the Columbia (Nuna) in the Paleoproterozoic Earth. These collisional 
orogens are located along the suture zone of the Ironian ocean, in a situation that indicates the process of in-
troversion. Although tectonic stress associated with the 1.9-1.8 Ga accretionary and intracontinental orogenies 
contributed complementarily to the assembly of Columbia (Nuna) around 1.75 Ga, this supercontinent formed 
essentially by collisional orogenesis during Ironian Ocean closure and therefore by introversion process.
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1. Introduction

After Roberts and Nance [1,2], a key process in many 
models related to the formation and breakup of super-
continents involves mantle superdownwellings (often 
referred to as slab avalanches) and superupwellings 
(known as superplumes). Li et al. have proposed that 
when a supercontinent forms through extroversion, 
the consumption of the previous external superocean 
results in the destruction of the existing subduction 
girdle [3]. This leads to the creation of a large mantle su-
perdownwelling beneath the newly forming supercon-
tinent. This process triggers a mantle superupwelling, 
which is typically responsible for initiating the activity 
of large igneous provinces (LIPs) and eventually leads 
to the breakup of the supercontinent [4], perpetuating 
the coupled supercontinent-superplume cycle [5]. Ex-
troversion occurs when the oceanic cell exterior to the 
subduction ring is closed. To achieve this closure, con-
tinents must drift across the exterior cell and collide 
with other continents on the opposing side [6]. 

On the other hand, a supercontinent formed 
through introversion would develop above a weaker 
mantle downwelling, which occurs as smaller and 
younger internal oceans are consumed during the pro-
cess of continental assembly [3]. During introversion, the 
continents merge along the mantle downwelling girdle, 
but remain within the continental cell, isolated from 
the external ocean by the surrounding subduction ring 

[6]. According to Martin et al. [6], conflicting interpreta-
tions of introversion and extroversion often arise when 
trying to classify oceans as interior or exterior based on 
paleogeography or the age of oceanic lithosphere rela-
tive to the time of supercontinent breakup. These au-
thors describe interior and exterior oceans in relation 
to the external subduction ring and the associated ac-
cretionary orogens that surround amalgamated super-
continents. All oceans within the continent-dominated 
cell, located inside the subduction ring, are considered 
interior oceans. Conversely, the exterior ocean is sepa-
rated from the interior oceans by the subduction ring 
and bordered by external accretionary orogens [6]. 

This paper aims to present robust evidence on 

internal ocean, in order to highlight the introversion 
process in Paleoproterozoic Earth.

2. Columbia (Nuna) Superconti-
nent

Rogers and Santosh proposed that the Columbia 
supercontinent existed sometime between 1.9 and 1.5 
Ga and began to disassemble around 1.4 Ga [7]. Their 
original configuration of this supercontinent was based 
on correlations between sedimentary basins in India 
and the Columbia region of North America. Columbia 
included the ancient cores of Ur (comprising India and 
western Australia, Madagascar, South Africa and East 
Antarctic cratons), Atlantica (which consisted of the 
cratonic elements of western and central Africa and 
South America), and Arctica (comprising Greenland, 
cratonic North America and Siberia), along with Paleo-
proterozoic additions to those regions. The main evi-
dence supporting this configuration includes the ages 
of rifting and the widespread collisional orogens that 
occurred between 1.9 and 1.8 Ga.

Numerous attempts have been made to model 
the supercontinent Columbia [8–12], starting with Zhao  
et al. [13], who created a reconstruction based on the ge-
ometry and age relationships of orogenic belts within 
Columbia. Meert reviewed the history of the Columbia 
supercontinent and the debate over whether the name 
“Columbia” or “Nuna” should take precedence [14]. He 
argued that although the term Nuna was used before 
Columbia, it referred only to the landmasses of Sibe-
ria, Laurentia, and Baltica [14]. Therefore, Nuna should 
be viewed as the core of “Nena - Northern Europe and 
North America” [15,16]. Furthermore, the assessment 
of the manifestation of modern-style plate tectonics 
throughout Paleoproterozoic goes together with the 
development of the Columbia/Nuna supercontinent 
models. It has become consensus that modern-style 
plate tectonics was operative in Paleoproterozoic, evi-
denced by ophiolites, low T/P metamorphism includ-
ing eclogites, passive margin formation, paleomagnetic 
constraints, ore deposits, abundant S-type granites, and 
seismic images of paleo-subduction zones [17–19].

Paleomagnetic data offer the only quantitative 
the existence of the Columbia (Nuna) supercontinent's method for reconstructing supercontinents, as noted 
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by Meert and Santosh [20]. Although a comprehensive 
worldwide paleomagnetic database is not yet fully avail-
able—particularly lacking data from the West Africa and 
Tanzania blocks—Chaves has proposed a new recon-
struction of the Columbia (Nuna) supercontinent (Figure 
1) [11]. This model positions Mawson/East Antarctica 
and proto-Australia together, following the work of Betts  
et al. [21,22], and places the Kalahari and Tanzania blocks in 
the Southern Hemisphere (Figure 1A). This reconstruc-

tion is supported by relevant paleomagnetic data pro-
vided by Xu et al. (Figure 1B) and Pesonen et al. (Figure 
1C) [23,24]. It is based on the correlation of large igneous 
province (LIP) mafic unit fragments, particularly by link-
ing their mafic dykes into radiating systems, as recom-
mended by Ernst [25]. Figure 1A represents Columbia 
(Nuna) supercontinent assembled around 1.8 Ga and its 
disintegration would be around 1.4 Ga. This life span for 
Columbia is the same as proposed by Zhao et al. [8]. 

Figure 1. The Columbia (Nuna) Supercontinent and Mantle Dynamics around 1.75–1.78 Ga: (A) The Columbia (Nuna) 
Supercontinent (Modified by the Fusion of Figures from Chaves [11] ). (B) Continental Reconstructions After Xu at 1.78 Ga. (C) 
Continental Reconstructions After Pesonen at 1.78 Ga. (D) X-Y Cross Section of the Earth at 1.75 Ga, Showing Ascent of Mantle 
Plumes from LLSVPs (Large Low Shear Velocity Provinces) and Subductions in Different Places Under Columbia (Nuna) [23,24]. 
ULVZ = Ultra-Low Velocity Zone. N = North. S = South. Reproduced/Modified with Permission from [11]. Copyright © [2021] 
[Elsevier].
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Probably related to mantle plume activity, there 
are six Columbia (Nuna) supercontinent LIPs of dif-
ferent ages, represented by remnant mafic dykes, sills 
and volcanics (Table 1, Figure 1A) [26–49]. The Columbia 

(Nuna) reconstruction elaborated by Chaves is suit-
able due to the radiating mafic dykes of the LIPs Hart-
Carson, Avanavero-Xiong’er, Timpton, Hame, Essakane, 
and Trans-Columbia [11]. 

Table 1. The Six Large Igneous Provinces of the Columbia (Nuna) Supercontinent (Compiled in This Work).

Large Igneous 
Province

Continental Block Name of the LIP fragments U-Pb Age (Ga) LIP fragments

Hart-Carson
Australia/East 
Antarctica

Hart, Carson, Hamersley-Mt.Isa-
Gawler

1.79

India Pebbair 1.79

Avanavero- 

Sills and dykes/volcanics/ mafic-ultra-
mafics [26]

Dyke [27]

Xiong’er

Avanavero 1.79

Crepori 1.78 Sill 

Sills/dykes [28]

[28] 

Taihang 1.78 Dykes [29]

Xiong’er 1.78 Volcanics [29]

Pará de Minas (first generation) 1.79 Dykes [30]

Uruguayan (Florida) 1.79 Dykes [31] 

Tomashgorod-Belokorovichi 1.79 Dykes [32]

Oskarshamn 1.78 ENE dykes [33]

Amazonia

Amazonia

North China

North China

São Francisco/Congo 

Rio de la Plata

Baltica 

Baltica

West Africa Libiri 1.79 Dykes [34] 

Timpton

Timpton 1.75 Radiating dykes [35]

Newer dolerites 1.76 Dykes [36]

Vestfold Hills-3 1.75 Dykes [37]

Januária 1.76 Dykes [38]

Kédougou 1.76 Dykes [34]

Tagragra of Akka 1.75 Dykes [39]

Kivalliq (Cleaver-Hadley Bay-Nueltin) 1.75 Dykes and sills [37]

Subbottsy-Nosachev 1.76

Siberia

India

East Antarctica

São Francisco/Congo 

West Africa

West Africa

Laurentia

Baltica Dykes/mafic intrusions [32]

Baltica Pugachevka-Fedorovka 1.76 Dykes/mafic intrusions [32]

Hame

Baltica Hame-Suomenniemi 1.64 Dykes [40]

Laurentia Melville-Bugt 1.63 Dykes [41]

West Africa Zenaga 1.66 Dykes [42]

Siberia Nersa 1.64 Mafic intrusions [43]

North China Western Shandong 1.68–1.63 Dykes [44]

Essakane

Essakane 1.52 Dykes [34]

Curaça-Chapada Diamantina 1.50 Dykes [45]

Humpata 1.50 Sills [46]

Kayser 1.52 Dykes [34]

Kuonamka 1.50 Dykes [47]

West Africa

São Francisco/Congo 

São Francisco/Congo 

Amazonia

Siberia

North China Gaoyuzhuang 1.50 Volcanics [48]

Trans-Columbia

Midsommerso-Zig Zag Dal 1.38 Dykes [46]

Mashak 1.38 Volcanics [46]

Kunene 1.38 Volcanics [46]

Pilanesberg 1.38 Volcanics [46]

Chieress 1.38 Dykes [46]

Hart -Salmon River Arch 1.38

Yanliao 1.32 Dykes 

Sills/Volcanics [46]

[48]

Laurentia

Baltica

São Francisco/Congo 

Kalahari

Siberia

Laurentia

North China

West Africa Bas Draa 1.38 Dykes [49]
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The interpretation of the geological records of 
orogenic belts is an additional tool to determining 
global paleogeography of Columbia (Nuna) supercon-
tinent. After Cawood et al. [50], reconstructing orogens 
is fraught with difficulty. However, they can be grouped 
within a spectrum of three endmember types: intrac-
ratonic (intracontinental), accretionary and collisional. 
Collisional orogens develop from the collision of con-
tinental lithospheric fragments, while accretionary 
orogens form at locations of ongoing oceanic plate sub-
duction. In contrast, intracontinental orogens are found 
within a continent, away from an active plate margin, 
as a response to far-field stresses [50]. An example of in-
tracontinental orogen would be an inverted rift, where 
there are no remnants of oceanic lithosphere.

The concentric orogenic pattern (configuration 
composed of orogenic belts surrounded by each other) 
of the Columbia (Nuna) paleogeography proposed 
by Chaves reveals 2.10–1.95 Ga collisional orogens 
(Tandilia-Piedra Alta/Rio de la Plata, Volga-Don/Balti-
ca, Khondalite Belt/North China, Birimian/West Africa, 
Eburnean and Luizian/Congo craton, Transamazonian/
Amazonia and São Francisco craton, Glenburgh/ West 
Australia, Usagaran/Tanzania, Taltson-Thelon and 
Inglefield/Laurentia, Limpopo/Kalahari, Mount Isa/ 
North Australia, Trans-North China/ North China, and 
Wopmay/Laurentia) bordered by 1.90–1.80 Ga com-
pressional intracontinental orogens located in the su-
percontinent core (Lesser Himalaya/India, Halls Creek/
North Australia, Angara, Akitkan, Sutam/Siberia, Zena-
ga and Reguibat/West Africa, and Tarim/Tarim) and by 
1.90–1.80 Ga accretionary orogens located at the super-
continent margins (Trans-Hudson, Nimrod-Ross/East 
Antarctica, Lapland and Svecofennian/Baltica, Torngat-
Quebec and Nagssugtoqidian/Laurentia, Ubendian/
Tanzania, and Rio Negro- Juruena/Amazonia) [11], with 
accretionary ones encircled by an external subduction 
girdle (Figure 1A) – all names of collisional, intracon-
tinental and accretionary orogens are compiled from 
Condie at 1.75 Ga [51]. This concentric pattern exposes a 
perceptible synchronicity concerning intracontinental 
and accretionary orogens, both which would have been 
formed respectively as response to far- and near-field 

stress transmission from external subduction conver-
gent girdle. Intracontinental orogens are characterized 
by the absence of oceanic lithosphere remnants (Figure 
1A).

3. The Columbia (Nuna) Super-

The 2.10–1.95 Ga collisional orogens of the Co

continent's Internal Ocean and 
the Introversion Process Perfor-
mance in the Paleoproterozoic 
Earth

-
lumbia (Nuna) supercontinent would have been formed 
through impact of continental lithospheric fragments 
during the consumption of an internal ocean in subduc-
tion zones (associated superdownwellings are repre-
sented in Figure 1D, which represents a X-Y cross sec-
tion drawn in the Figure 1A). This internal ocean, here 
named Ironian (“the iron-rich ocean”, whose northern 
extension in central Canada was previously named as 
Manikewan ocean by Stauffer) [52], has its suture zone 
delineated in Figure 2 according to the probable lateral 
prolongation of recognized oceanic remnants as 2.5–2.2 
Ga Superior-type banded iron formations (evidence 
of the possible ocean spreading stage) [53–76]. Superior-
type iron formations are developed in shallow marine 
environment in passive-margin sedimentary rock suc-
cessions. The deposition of iron formations at 2.50 to 
2.45 Ga preceded supercontinent assembly and the 
hydrothermal flux of iron was likely derived predomi-
nantly from mid-ocean ridges [77]. The suture zone of the 
Ironian Ocean is also delineated by 2.2–1.8 Ga eclog-
ites, blueschists, oceanic plateau, eclogite xenolith and 
ophiolites (evidence of the ocean closure stage) [61–76]. In 
other words, when a paleoproterozoic rock association 
made of Superior type-BIF, eclogites, blueschists and 
ophiolites are found along a same suture zone (Figure 2), 
the suitable interpretation is that the geological scenario 
was composed of a subducted oceanic lithosphere, here 
named as Ironian Ocean. In addition, when comparing 
Figure 1A and Figure 2, we can see the collisional oro-
gens along the proposed Ironian ocean suture zone in a 
situation that indicates an introversion process.
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Wan et al. present seismological evidence for sub- accompanied by 2.1–1.9 Ga collisional orogeny, was 
duction network at 2 Ga ago for North China, Laurentia, between 2.2–1.8 Ga. These geological processes have 
Siberia and Baltica continental blocks [78]. By consider- implications for economic geology, since the Ironian 
ing the hypothesis of this evidence under Rio de La Ocean suture zone may contain more mineral deposits 
Plata, São Francisco/Congo, West Africa, Australia,  such as hematite, graphite and others than are cur-
Tanzania and Kalahari continental blocks as well, it is rently known. It is important to mention that plate re-
here suggested that possible spreading and subsequent construction is one of the fundamental geoscientific ex-
subduction of the Ironian Ocean represent the activity ercises that has geological implications and geometries 
of the modern-style plate tectonics during Paleoprote- and sizes of continental blocks of the Columbia (Nuna) 
rozoic. As mentioned, spreading along a central oceanic supercontinent presented in Figure 1 have been ex-
ridge occurred between 2.5–2.2 Ga, and its subduction, tracted from GPlates tool [79–81].

[60]. Letters: A – Reference [61], B – Reference [62], C – Reference [63], D – Reference [64], E – Reference [65]; F – Reference [66], G – Reference [67], H – Reference [68], I – 

Reference [69], J – Reference [70], K – Reference [71], L – Reference [72], M – Reference [73], N – Reference [74], O – Reference [75], P – Reference [76]

Figure 2. The Suture Zone Positioning of the Ironian—The Columbia's Internal Ocean—Around 1.75 Ga. 2.5–2.2 Ga Superior-
Type Banded Iron Formations and 2.2–1.8 Ga Blueschists, Eclogites, Oceanic Plateau, Eclogite Xenolith and Ophiolites are 
Distributed Along the Ironian Ocean's Suture Zone. 
Notes: Numbers: 1 – Reference [53], 2 and 3 – Reference [54], 4 – Reference [55], 5 – Reference [56], 6 – Reference [57], 7 – Reference [58], 8 – Reference [59], 9 – Reference 

.
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4. Conclusions

To understand individual stages of a superconti-
nent cycle, it is necessary to decipher the relationships 
between paleogeography, tectonics and mantle dynam-
ics and thermal evolution [6,80]. During the 2.2–1.9 Ga 
introversion of the Columbia (Nuna) supercontinent, 
continental blocks collided and remained within the 
continental cell isolated from the exterior superocean 
by the external subduction ring (Figure 2). Although 
tectonic stress associated with the 1.9–1.8 Ga accretion-
ary and intracontinental orogenies contributed comple-
mentarily to the assembly of Columbia (Nuna) around 
1.75 Ga, this supercontinent formed essentially by col-
lisional orogenesis during Ironian Ocean closure (ocean 
name proposed here for the first time) and therefore by 
introversion process in the Paleoproterozic Earth.
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