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ABSTRACT
Occurrences in the forms of vibrational phenomena have both positive and negative impacts on the Earth’s 

crust and materials. Scientists in the field of seismology and emerging technologies often hinge their innovations 
and applications on the nature of material compositions. Owing to this, we present in this work a surface wave 
solution that results from a dual-porous pre-stressed transversely isotropic impedance medium with an irregu-
lar boundary under heat stress based on Green-Lindsay thermoelasticity, and derived through the principles of 
mathematical analysis associated with wave motion. The irregularity of the boundary is assumed to be in the 
form of a corrugated surface. This is represented as a trigonometric Fourier series in which the wave number 
and the amplitude associated with the corrugated surface of the medium affect the motion of the wave. Moreover, 
initial stress and dual porosity sources are incorporated into the modeled problem to enrich its physical com-
position. Due to the satisfaction of the adopted displacement components within the classical wave equation, 
we employed the harmonic solution method to find the analytical solution and perform analysis on the modeled 
equations of motion. Following this, we derived the fundamental analytical solution for the various distributions 
of double porosities, thermal flux, shear and normal stresses, and displacement components of the surface wave 
on the transversely isotropic material. We demonstrate the dependency of the wave propagation on these inter-
acting physical quantities including dual porosities, initial stress and the grooved boundary surface parameters 
such as the wave number and amplitude of material’s corrugation. Thus, it suffices to state that researchers in 
geophysics, material sciences, and mechatronics applications, among others, would find this model useful.
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1. Introduction

The investigation of seismic wave propagation 
and modulation caused by natural occurrences such 
as earthquake is crucial for understanding the Earth’s 
interior and other seismic happenings around different 
surfaces of the Earth’s crust. The Earth, by its composi-
tions, is structured in different layers. Nevertheless, 
these layers are subjected to seismic waves resulting 
from earthquake activity. Thus, the propagation prop-
erties of these seismic waves in layered structures are 
significantly of essence as a result of the applications 
primarily related to geophysics; in relation with pros-
pecting for minerals, mechanical and structural engi-
neering, among others. Generally speaking, the Earth’s 
crust as a material medium, is not homogeneous. Dif-
ferent forms of heterogeneous characteristics abounds. 
The developments in heterogeneous characteristics 
occurred due to varying elastic properties wuth depth. 
The heterogeneous occurrences could also be as a 
result of the phenomena involving develop, growth, 
and coalescence of micro-cracks within the solid rock 
materials. Subsequently, substantial evidence exists in 
the literatures that rock structures in the Earth’s crust 
contains many forms of heterogeneities, which can be 
represented mathematically using several functions. 
This postulations gave rise to the idea that a lot of stud-
ies which were already carried out could depict the im-
pacts of various forms of heterogeneity through linear, 
quadratic, cubic, quartic or even exponential, or other 
nonlinear functions of depth on the SH-waves propaga-
tion, in particular.

Normally, earthquake phenomena are triggered 
as a result of body forces, and are formulated as space-
time dependent impulsive line sources, usually ex-
pressed by the Dirac delta function whose resulting 
elastic displacement in layered structures is deter-
mined by making use of the Green’s function technique. 
Green’s function technique has demonstrated to be a 
proven mathematical approach for finding the solution 
of problems in elastodynamics associated with solid 
mechanics of materials involving impulsive sources. For 
instance, various studies have examined the propaga-
tion behavior of Love-type of waves by utilizing Green’s 

function method to handle impulsive point source 
problem in a heterogeneous medium, viscoelastic func-
tionally graded half-space media respectively. Hence, 
this analysis is similar to investigations on the effect 
of point source on SH-wave propagation through or-
thotropic crustal layers, as widely documented in the 
literatures. The notion of Love waves are such that they 
are surface waves that propagate through an elastic 
layer of short thickness resting against an elastic half-
space in welded contact. Love waves are polarized hori-
zontal shear waves whose vibrations of its particle are 
parallel to the horizontal plane of the layer and normal 
to the direction of propagation of the wave. Research-
ers have observed that the devastating structural col-
lapse during earthquakes are often due to SH-motion, 
closely related to Love-type waves. Owing to their high 
propagation speed among various surface waves, their 
applications span across seismology, non-destructive 
testing of layered media, and examination of laminated 
and coated materials.

 In addition, researchers in this field of mechanics 
devote great attention to studies involving initial stress 
on material exhibiting disturbances while incorporat-
ing thermal field, magnetic field and maybe porosities, 
etc., under various thermal relaxation time parameters. 
Their relevance in exploring and interpreting informa-
tion about seismic waves, earthquakes, volcanoes and 
mechanical acoustics occurrences are paramount. Thus, 
studies which are concerned with the classical theory 
of thermal elasticity suggests that if an elastic solid is 
put under a thermal loading, the effect is immediately 
observed at a distance from the source. This implies 
that thermal waves propagate at infinite speed, result-
ing in unrealistic physical predictions. In contrast, non-
classical thermoelastic emerged in the late 20th cen-
tury, incorporating a flux-rate term into Fourier’s law of 
heat conduction. This gave rise to a generalized theory 
of thermo-elasticity that yields a hyperbolic heat trans-
port equation that admits finite speeds for thermal 
signals. In line with this similar idea, Green and Lindsay 
opined a temperature-rate term into the constitutive 
variables characterizing a medium, and formulated a 
temperature-rate-dependent thermoelasticity theory. 
The theory does not distort the classical Fourier’s law 
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of heat conduction, especially for bodies with a center 
of symmetry. They showed that this theory also pre-
dicts a finite speed for heat wave propagation. All of 
these developments are widely recognized and refer-
enced in the literature. 

In spite of this, the analysis of stress-strain factors 
in materials, which plays a significant role in understand-
ing the strength and fatigue characterizations of materi-
als, is of crucial importance to engineering destructive 
testing and a range of other industrial applications in 
solid mechanics of materials such as in geophysics and 
seismology. Such materials could be orthotropic, mono-
clinic, isotropic, or transversely isotropic, etc. However, 
they are best classified as isotropic and anisotropic ma-
terials as in Spencer [1] and Abd-Alla et al. [2]. Transversely 
isotropic materials characterizations are often symmet-
ric about an axis and postulated to be normal to a plane 
of isotropy. For instance, unidirectional fibre composite 
lamina whose fibres are circular in cross-section, geo-
logical layers of rocks are all equally interpreted or un-
derstood as transversely isotropic. Hence, describing a 
model or developing formulations that provide insight 
into vibratory modulations and analysis on transversely 
isotropic medium becomes imperative for researchers 
and scientists. These are achieved through mathematical 
and theoretical approach or even experimental stud-
ies. Mathematical models capable of capturing wave 
solutions in transversely isotropic materials have been 
proposed by Chadwick et al. [3], Lalawmpuia et al. [4,5], 
Gupta et al. [6], Ding et al. [7] and Chattopadhyay [8]. The 
results obtained by these authors were based on the 
specific material characterizations considered in their 
respective studies.

Furthermore, incorporating some of these en-
vironmental factors or the internal properties of the 
medium such as initial stress, voids or porosity, etc., 
is not uncommon in model formulations and analysis 
of physical materials. Authors in the literature, includ-
ing Anya et al. [9,10], Othman et al. [11], Bayones et al. [12], 
Singh et al. [13], Acharya et al. [14], Kundu et al. [15], Zhu 
et al. [16] and Dhua et al. [17], made contributions along 
similar lines. Their studies focused on the investiga-
tion and enumeration of the influences of initial stress, 
homogeneity, and heterogeneity for the propagation 

of waves in a transversely isotropic medium under 
thermal flux, and also on the dynamics for a rotating 
grooved and impedance boundary anisotropic mate-
rial which characterizes their respective examinations. 
Some of the authors in their examinations were also of 
the view that the propagation of waves is impacted by 
the temperature effect and the presence of voids in the 
material. Porous and multiporous media are defined as 
materials possessing one or more types of pore param-
eters or inclusions in their structure. This means that 
a porous medium also called poroelastic medium is a 
type of material medium made up of the solid skeleton 
including with pore spaces that is often filled with fluid. 
Voids or pores on materials are one important aspect of 
material characterization encountered in almost every 
substance on the planet and surely this is without ther-
mo-elastic effects. Moreover, researches have shown 
that heating of a material containing pores tend to ex-
pand the pores ration on the material and the reverse 
is the case when the material is cooled. That is, when 
the material cools down, the pores components on the 
material contract. This entails that particle migration 
back to their original shape also plays a vital role in the 
contraction and expansion of the voids on the material. 
Waves modulation and propagation through single, 
dual or multiple porous medium is of great essence in 
many engineering applications such as the oil and gas 
industry, geotechnical and geophysics engineering, 
chemical engineering, amongst others. Following the 
problem models associated with elastic stability for an-
isotropic material, examinations involving fluid saturat-
ed porous layer has been discovered to be very useful 
in theories and applications. It is evident that the lay-
ers of the Earth’s crust comprises of all kinds of rocks; 
limestone, shale, etc., demonstrating poroelasticity in 
nature. And thus, during the events of earthquake dy-
namics, these poroelastic rocks are subjected to seismic 
waves propagation. This made it possible for scientists, 
geoscientists and engineers, to devote great interests 
for seismic waves propagation in poroelastic materials. 
The following authors in the literatures Cowin et al. [18]  
and Nunziato et al. [19] made formulations and pro-
posed both the linear and non-linear theories for wave 
propagation in isotropic elastic media with voids. Their 
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proposition and development of linear and nonlinear 
theories on elastic material with voids infused nothing 
of mechanical or energetic importance, however, finite 
deformations are still possible during stress loadings. 
Cowin and Nuziato theories for voids in elastic material 
were carried out or proposed because the idea is to fac-
tor in bulk density of the medium into two fields: voids 
volume fractional fields and the density field of matrix 
material. Such factorization of bulk density infused a 
nondependent kinematic parameter or variable. This is 
called the change in volume fractional field during the 
stress-strain loading process on the material medium.

In a different vein, material surfaces and bounda-
ries are often of distinct shapes, either planar or non-
planar. In this work, we utilized the concept of nonpla-
nar or irregular surface boundary conditions likened 
to corrugation or a grooved surface condition of the 
material. Corrugation refers to the ridges and grooves 
present on a material, whether artificially or naturally 
designed, and their effects on elastic wave propagation 
are significant. Several impacts such as dispersion of 
the wave, phase velocity and even show of direction to 
wave propagation in a bunch of materials are highly 
envisaged and alterations feasible. As a matter of fact, 
interface grooves decreases phase velocity in Lamb 
waves while surface grooves increases phase velocity 
in Lamb waves. It is also worthy to note that grooves 
are crucial in creating guided waves such as the spin 
waves in magnetic materials or even in exploiting or 
manipulating the properties of surface waves and in 
particular; Rayleigh waves. Hence, optical waveguides, 
design of smart structures, magnonics field of study 
leading to development of new materials and non-
destructive evaluation of materials are some specific 
instances through which grooves on material could play 
importance to our everyday material productions and 
usage. Asano [19] investigated reflection and refraction 
across interfaces using a grooved boundary conditions 
represented by a periodic trigonometric series. Other 
relevant works include Maleki et al. [20], Chowdhury  
et al. [21], Lalvohbika et al. [22], Prikazchikov et al. [23] and 
Rogerson et al. [24], who studied isotropic and incom-
pressible transversely isotropic materials with corru-
gated surface initial stress. Also, authors in the litera-

tures have, nevertheless, made contributions to these 
developments of double porous and corrugated surface 
studies along interfaces using several physical material 
compositions, as the case may be, and as posited by the 
following authors; Mishra et al. [25] whose works were 
conducted on the transmission of Love waves due to an 
impulsive line source in a heterogeneous double porous 
rock structure, Dutta et al. [26] works centered on find-
ing the solution of waves in a nonlocal fiber-reinforced 
double porous material structure under fractional-or-
der heat and mass transfer, Panji et al. [ 27] investigated 
on a half-space TD-BEM model for a seismic corrugated 
orthotropic stratum and Dai [28] work dwelt on provid-
ing solutions for Love waves in double porous media 
while elastic wave propagation and attenuation in a 
double-porosity dual-permeability medium were inves-
tigated by Berryman et al. [29]. 

In addition, impedance boundary conditions are 
widely employed by researchers. Impedance on ma-
terials in a mechanical wave propagation, entails the 
measure of a material’s resistance to the flow of matter 
or energy carried along by a wave. More so, it actually 
stipulates the ratio of the pressure or force moving the 
wave to the yielding velocity. Studies involving imped-
ance gives a soothe understanding especially in analysis 
regarding wave characteristics across interfaces of dif-
ferent layered materials where reflection and refraction 
takes place. Matching impedance and impedance mis-
match are two important concepts in wave propagation 
on impedance materials. If the impedance of two dif-
ferent media matches then the wave energy is with less 
reflection and with more transmission. And when the 
case for a mismatch impedance occurs on two differ-
ent materials some of the wave energy reflects and the 
others are transmitted. The quantity transmitted and 
reflected depends on the magnitude of the difference 
in impedance of the two media. This connote that from 
a physical point of reference, so far as there is no vari-
ation in the impedance, propagation of the wave is not 
affected or impacted. This is also helpful in the design 
of mechanical-acoustic media, design of musical instru-
ments. In geophysics and geotechnical, impedance is 
applied in analyzing seismic waves and in understand-
ing the structure of the Earth’s surfaces and subsurface. 
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It is also very crucial to engineering metamaterials de-
signs which invariably have artificially engineered char-
acteristics and capability to control wave propagation, 
Anya et al. [10]. Consequently, all these makes it possible 
for Scientists to employ suitable boundary surfaces for 
a particular examination on wave propagations.

Based on the literatures reviewed above, the in-
vestigation aims to model and present an analytical 
solution for surface wave modulation on an initially 
stressed, corrugated-impedance boundary of a ho-
mogeneous dual porous transversely isotropic mate-
rial with dual pore sources and thermal loadings. The 
thermal loading is considered to take precedents from 
Green-Lindsay thermo-elastic theory where the two 
thermal relaxation times parameters are incorpo-
rated in the heat conduction equations and the stress 
equations. Thus, this infuses a bridge in gaps in the 
literatures, and most worthy to note; as it stipulates or 
proposes the analytical solutions of such models not 
found in combined kind as presented in this investiga-
tion. For instance, Singh et al. [30] model wholly dealt on 
plane harmonic waves in a thermo-elastic solid with 
double porosity and without the considerations of ini-
tial stress, impedance and grooved surfaces of the their 
considered materials. Thus, it is important to examine 
the nature of our present work/model or study as re-
gards to the considered physical material structure and 
its characterization arising from solid mechanics since 
material characterization and formulations are ever 
evolving for technological advancements. This research 
work undoubtedly leads to seismology and thus, seis-
mic solutions of wave characterizations and distribu-
tions and in particular surface waves vis-à-vis Love, 
Stoneley and Rayleigh types of waves for the dual trans-
versely isotropic considered material and its composi-
tion. These kinds of waves on dual porous transversely 
isotropic medium are of great essence in studies involv-
ing mechatronics devices, biomedical magnetic imaging 
associated with noninvasive medical imaging tests that 
produces good account of almost every internal struc-
tures in the human body including blood vessels, bones, 
organs, etc. using magnet and wave principles. Subse-
quently, this research work employs a wave dynamic 
procedure called the harmonic method in its investiga-

tion and the solution of the problem presented in a two 
dimensional geometry of the material. Consequently 
upon this, the developed analytical results of the ther-
mal field distribution, the stresses on the material, the 
dual porous distribution and the displacement distri-
butions, on the surface of the material are derived and 
presented. We analytically demonstrate the dependen-
cy of the fields’ distributions and by extension the wave 
propagation on these interacting physical quantities 
including initial stress, grooved-impedance parameters 
and the two times thermal relaxation constants.

2. Materials and Methods

Mathematical Formulation of the Problem
The constitutive equation for the stress-strain 

relation that depicts a grooved-impedance surface of 
a transversely isotropic material considering initial 
stress, Anya et al. [31] and double porosity, Singh et al. [30], 
on the material with thermal stress, Abd-Alla et al. [2], 
and Anya et al. [31], compositions is thus, presented:
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 (1)

The parameters in Equation (1) i.e., C11, C12, C22, C23, 
and C66 denotes the material constants, ( ), , /2ij i j j iu uε = + ,  
entails the strain tensor, σij represents the stress tensor 
which gives the field distribution of the stress on the 
material, whereas δij is defined to be the Kronecker–

delta function such that 1,2,3.i j= = . ( ), , /2ij i j j iu uϖ = − , rep-
resents the rigid body rotation tensor, P denotes initial 
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stress parameter on the transversely isotropic material. 
ui denotes the components of the displacements of the 
wave on the material. βij denote thermal moduli of the 
grooved-impedance transversely isotropic material, on

denotes one of the thermal relaxation times parame-
ters, while T denote the temperature of the material. φ
andϑ are field components of the material due to dou-
ble porosities while χ1, χ2 represents parameters due to 
double porosities of the transversely isotropic material. 
Thus, the governing balance laws under the influence 
of Green and Lindsay (G-L) theory of thermo-elasticity 
considering the stress-strain relations characterized by 
grooved-impedance surface of a transversely isotropic 
material under initial stress and double porosities on 
the material follows:

 ,ij j iuσ ρ=   (2) 
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 2 , , 2 , 3 5 2( ) ( ) ( ) ,ii ii i iu Tξ φ ξ ϑ χ ϖφ γ ϑ γ γ ϑ+ − − − + =    (4) 

2 2 2
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 (5) 

The terms on and oτ in the field equations above, 
are the known two term Green-Lindsay thermal re-
laxation constants or parameters which satisfies the 
hypothesis 0 0.on τ≥ ≥ More so, when we consider 

0oτ > , then 0,on >  thus this entails Equation (5) pre-
dicts a short speed of modulation of thermal signals 

and if 0 0on τ= = , it stipulates that Equations (1) and 
(5) gives coupled thermo-elasticity theory with dual 
porosity effects. T is the temperature of the medium. 

- oT T  is the difference in temperature of the medium 
and reference temperature of the medium. In addition, 

the assumption 0- oT T T<<  is used to replace - oT T  
with T in Equation (1). Also, ρ represents the density 
of transversely isotropic material, while γ =, 1,2,3,4,5i i ; 
represents parameters due to double porosities on the 
grooved-impedance transversely isotropic material, ijκ

represent conductivity tensor, cn is the specific heat at 
constant deformation. Owing to this Mathematical for-
mulations and the posited governing laws stated above, 
our Mathematical analysis to this model problem would 
be centered in the directions of x1 x2-plane of coordi-
nates such that the direction of x3 = 0 and the displace-
ments 1 2 0u u≠ ≠  are however, coupled. Nevertheless, 
Equations (2)−(5) results to the components of the dy-
namic equations which are as follows: 
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ii ii i iu T       (9)

2 2 2

4 5 1,1 2,22 2 2( ) ( )  ( ) ( ) ( )( ).ij v o o o o o o ij
i j

T c T T T T u u
x x t t t tt t t

κ ρ τ γ τ φ γ τ ϑ β∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + +

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂
2 2 2

4 5 1,1 2,22 2 2( ) ( )  ( ) ( ) ( )( ).ij v o o o o o o ij
i j

T c T T T T u u
x x t t t tt t t

κ ρ τ γ τ φ γ τ ϑ β∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + +

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂

  (10)

Where; B1 = (C66 – P/2), B1 = (B3 + C12), B3 = (C66 + P/2).

3. Solution of the Problem

Here, we consider the characterization of the dual 
porous, corrugated-impedance surface of a homogene-
ous transversely isotopic half-space under heat flux, 
and thus, employ the normal mode approach for wave 
analysis, such that the wave displacements, dual porous 
field effects and thermal assumptions take the form be-
low:

 
1

2 20 2

2

( , , , ) { ( ), ( ), ( ),

( )} , 1, 2.
j j

t ibx

u u

x j

T xT x x

eω
φ ϑ φ ϑ

+

Φ =

Φ

−

=

=
  (11)

By employing Equation (11) into Eqs. (6–10), we 
have the equations below:
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ρω χ φ

χ ϑ

− − + + +

+ Φ =

2 2 2
1 11 1 2 2 1

2

( ) ( ) ( )
( ) 0,
B D C b u iB bD u ib

ib bis
    (12)

ρω χ φ

χ ϑ

+ − − + +

+ Φ =

2 2 2
3 1 22 1 2 1

2

( ) ( ) ( )
( ) 0,
iB bD u C D B b u D

D sD
    (13) 

χ χ ξ ξ ω γ ω φ

ξ ξ ϖ ϑ γ

− − + − + − − +

− + − + Φ =

2 2 2
1 1 1 2 1 1 1
2 2

2 2 4

( )

( ) 0,
oibu Du b D

b D
    (14) 

χ χ ξ ξ ϖ φ

ξ ξ γ ω γ ϑ γ

− − + − + − +

− + − − + Φ =

2 2
2 1 2 2 2 2
2 2 2

2 3 5

( )

( ) 0,

ibu Du b D

b D
        (15) 

β ω β ω ω γ τ ω φ ω γ

τ ω ϑ κ ωρ τ ω κ

− − − + − +

+ − + − Φ =
0 1 1 0 1 2 0 4 0 0 5

2 2
0 0

(1 ) (1

) ( (1 ) ) 0.v

T bi u T Du T T

D c b
  (16) 

Here, D = d/dx2, is an ordinary differential opera-
tor as per convention. Consequently, non-trivial solution 

of Equations (12)−(16), that is, for 1 2( , , , , ) 0u u φ ϑ Φ ≠ , 
the determinant of the system of Equations (12)−(16), 
yields the characteristic polynomial equation below: 

φ ϑ

+ + + + +

Φ =

10 8 6 4 2
1 2 3 4 5 6

1 2

( )

( , , , , ) 0

C D C D C D C D C D C

u u
.         (17)

where (1 )os n ω+= − and Ci , i =1, 2, 3, 4, 5, 6 (see Ap-
pendix A) showcase that the complex coefficients of 
the material parameters are eminent. Since vi , i =1, 2, 3, 
4, 5 gives positive real roots of auxiliary Equation (17), 
we have the solutions in the form below whilst utilizing 
the harmonic method associated with wave analysis as 
presented below:

 2

5

1, 2 1 2 3 4
1

( , , , ) ( , , , , ) nx
n n n n n

n
u u M M M M M e nφ ϑ −

=

Φ =∑ ,      (18)

Here, Mn, M1n, M2n, M3n and M4n are functions wholly 
dependent on the wave number b as linked to the 
grooved boundary surface and the frequency ω which 
is complex in nature, and in the direction of the x1coor-
dinate of the surface wave modulation. Thus, this en-
tails that using Equation (18) into Equations (12)−(16), 
yields the following relations below:

1 1 2 2 3 3 4 4, , , .n n n n n n n n n n n nM H M M H M M H M M H M= = = = . (19)

n ρω n n

n ρω

= − − + −

− −

2 2 2 2 2
1 1 11 3 2

2 2 2
22 1

Wher : [( ) ] /[(

( )) ],
n n n n

n

e H B C b B b B

C B b bi

χ
χ n

= − − − − + + +

+ − − − + +
2 1 1 4 7 0 0 3 6 7 2

2 5 7 2 1 0 3 6 7 2 1

{( )/( )}
{( )/( )}

n

n n

H ib P P P Q P P P P Q
P P P Q P P P P Q H

, 

2 2 2
3 0 1 1 2 2 0 1 1 0 1{ }, ,n n n nH Q H Q H Q P bξ n ξ ω γ ω= + + = − − −

4 0 1 1 0 0 4 2 5 3
2 2

0
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n n n n n

n v

H T bi H T H H

C b

β ω n ω τ ω γ γ
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2 2 2
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1 2 2 2 2

2 3 0 5 0 0
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,

{( ( ) )( (1 )) ( )(1 )}
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n n v

b T i ib C
P

b C T
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2 2 2

2 5 1 0 2 0
2 2 2 2 2
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0 2 0 5 4 0
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4. Boundary Conditions of the 
Material 

We make a supposition such that the equation 
of impedance-grooved surface of the transversely iso-
tropic half-space with dual pores be denoted as x2 = 
η(x1). Here, η(x1) is considered a periodic function and 
certainly independent of x3 coordinate. Thus, we can as-
sume a trigonometric Fourier series of η(x1) by follow-
ing Asano [32]:

   1 1
1

1
( ) ( )ilbx ilbx

l l
l

x e eη η η
∞

−
−

=

= +∑ , (20)

where ηland η–l are Fourier expansion coefficients 
and l, is the series expansion order. Let us initi-
ate the constants a, Rl and Il as follows: 1 / 2aη± = , 

( )/ 2, 2,3...l l lF I lη± = + = , andη(x1) = acosbx1 + F2 cos2bx1 + 
I2 sin2bx1 +... + Fl coslbx1 + Il sinlbx. Fl and Il are the Fou-
rier cosine and sine Fourier coefficients respectively. 
It suffices that the nature of the grooved or corrugated 
boundary surface can be denoted with the help of co-

sine terms, that is, by taking 1 1( ) cos ,x a bxη = . Where a 
is the amplitude of the grooved boundary, and b is the 
wavenumber associated with the grooved boundary 
with 2π/ b as the wavelength.
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i. Stress w.r.t x2 are continuous , i.e.

 22 1 21 2 2( ) 0x Z u Pσ η σ ω′− + + = , (21)

 12 1 11 1 1 12( ) 0σ η σ ω ϖ′− + + Ρ =x Z u , (22)

at x2 = η(x1), for all x1 and t.  
ii. the double porous Type-I and Type-II boundary 

conditions takes the form:

 1 ,2 2 ,2 1 ,t ibxPeωξ φ ξ ϑ ++ =  (23)

 2 ,2 ,2 2 ,t ibxP eωξ φ ξϑ ++ =  (24)

at x2 = η(x1), respectively.
iii. thermal boundary conditions 

 ,2 0.T hT+ =   (25)

Here, Z1 and Z2 entails the impedance parameters of 
the grooved-impedance transversely isotropic material. 
Also, h → 0, gives thermally insulated boundary character-
istics of the material, and h→ ∞, gives isothermal bound-
ary conditions of the material. While P1 and P2 represents 
the dual porous source parameters on the material. 

5. Results

In this section, we present the case where applica-
tion of the impedance and grooved boundary conditions 
with dual porous source parameters, considering G-L 
thermoelasticity of the transversely isotropic medium, 
results to the system of equations below whilst using the 
fact that h → 0, i.e., for thermally insulated boundary:

( )
n ξ

n n β n ω

χ χ ω −

− − + +

+ + + =1

1 1 1 3 22 1 1 2

( )
1 2 2 3 2 1

{ sin (( )) ( 1 )

( ) } 0,n

n n n n n o

x
n n n n

ab bx B ibH B C H H

H H Z H M e
 (26) 
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n ξ ω

n χ χ

β n ω n ω
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+ + − +

=1 1

1 11 12 1 1 2 2 3

1 4 3 1 1 1
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1

{ sin ( ( )
1 ) {(  )} }

sin ,n

n n n n

n o n n

x t ibx
n

ab bx C ib C H H H
H B ibH B Z

M e Pab bx
 (27)

 1( )
1 2 2 3 1( ) n x

n n n n nH H M e Pn ξξ n ξ n −+ = −   (28)

 1( )
2 2 3 2( ) n x

n n n n nH H M e Pn ξξ n ξn −+ = −   (29) 

 1( )
4{( } 0, 1,2,3,4,5.n x

n n nH M e nn ξn −− = =  (30) 

 The analytic solution of the field distributions 
of stresses, thermal and displacement components 
and dual porous distributions are finally derived 

for , 1,2,3,4,5,nM n = in Equations (26)−(30). These are 
easily obtained using any symbolic solver like Math-
ematica Software, etc. Hence, the distribution of the 
components of displacements of the surface wave, 
double porous and thermal field distributions, and the 
normal and shear stress quantities, for the considered 
material, yields the following:

2 1
1 ,nx t ibx

nu M e n ω− + += 2 1
2 1 ,nx t ibx

n nu M H e n ω− + +=

2 1
2 ,n ωφ − + += n x t ibx

n nM H e 2 1
3 ,n ωϑ − + += nx t ibx

n nM H e
2 1

4 0 ,nx t ibx
n nT M H e Tn ω− + += +

( )
n ω

σ n β n ω

χ χ − + +

= − + + +

+ −2 1

22 22 1 1 4

1 2 2 3

{ ( 1 )

( )} ,n

n n n o

x t ibx
n n n

C H H

H H M e P

( ) n ω

σ n χ χ

β n ω − + +

= − + + −

+ −2 1

11 11 12 1 1 2 2 3

1 4

 { ( )

1 } ,n

n n n n
x t ibx

n o n

C ib C H H H

H M e P

2 1
12 3 1 1 {(  )} ,nx t ibx

n n nB ibH B M e n ωσ n − + += −  
2 1

21 1 1 3 {( )} , 1,2,3,4,5.nx t ibx
n n nB ibH B M e nn ωσ n − + += − =

And thus, we can physically and mathematically 
assert to the dependency of the considered parameters 
of initial stress, grooved and impendence parameters 
as linked with the amplitude and wave number of 
the corrugation, dual pore sources and thermal times 
constants on the fields’ distributions as evident in the 

, 1,2,3,4,5nM n = viz a viz 1 2 3, ,n n nM M M and 4 .nM .

6. Conclusions

This work deals with the closed-form or analyti-
cal solution of plane surface waves propagating on the 
grooved-impedance boundary of a dual-porous pre-
stressed transversely isotropic material with thermal 
stress, based on the Green-Lindsay theory, in which two 
thermal relaxation times parameters are incorporated 
in the heat and stress equations, respectively. Aside from 
the formulation of the model, closed-form relations 
of the thermal distribution, dual porous and stresses 
distributions, and the displacement components of the 
wave motion on the grooved-impedance transversely 
isotropic material were derived. It is found that these 
physical parameters of corrugation, impedance, double 
pore sources, and the heat flux influence the modulation 
of the wave fields of displacements, thermal fields and 
stress distributions on the material. These were achieved 
by the utilization of the harmonic solution method and 
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the employment of a non-trivial solution to the reduced 
associated equations of motion, which resulted in a poly-
nomial equation of degree 10; however, with 5 positive 
complex roots characterizing the fields’ distributions. 
Hence, a robust numerical approach may be needed in 
computing these roots of the polynomial for graphical 
visualizations of the resulting derived closed-form solu-
tions of the fields distributions.

In addition, we deduced that for negligible pre-
stressed occurrences and dual pores source parameters 
on the considered material, the determinant of Equa-
tions (26)−(30), for 0; 1,2,3,4,5nM n≠ = would give the 
dispersion relation of Rayleigh-type of wave as a par-
ticular case of the model. Also, other forms of surface 
waves like the Stoneley waves (which are a generalized 
kind of Rayleigh waves in which we assume that waves 
are propagated along the common boundary of two dif-
ferent semi-infinite media) and Love waves can equally 
be deduced following their individual boundary condi-
tions they are associated with.

Thus, it is crucial to note that this research out-
put serves as a basis for examining information in the 
areas of destructive testing in materials, material sci-
ences and designs, seismology and geophysics; where 
grooved-impedance characterizations and dual porosity 
in materials are of paramount importance. Such specif-
ics are linked to mechanical systems, in which imped-
ance applies to the analysis of vibrating structures and 
musical equipment. Often, these surface waves are ap-
plied in other areas, such as in biomedical devices like 
biosensors used in biology to analyze deoxyribonucleic 
acid properties, virus detection, and so on. Also, the 
measurements of toxic material substances in Medicine 
and Chemistry can be achieved by employing some of 
these surface waves in laboratory settings.
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Appendix A

This appendix is provided to describe the vari-
ous coefficients associated with Equation (17), i.e., the 
characteristic equation obtained from the non-trivial 

solution of the resulting Equations (12)−(16). These 
complex coefficients are essential for the evaluation of 
the characteristic roots needed for the formulation for 
the solutions of the field distributions given in Equation 
(11).
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