
52

Earth and Planetary Science | Volume 04 | Issue 01 | April 2025

ARTICLE

How can the Choice of Integration Method Optimize the 
Earthquake Finite Fault Simulation: A Case Study of 2004 Mw 6.1 

Parkfield Earthquake
Ameneh HoushmandViki 1* , Anooshiravan Ansari 2 

1Geophysics, International Institute of Earthquake Engineering and Seismology, Tehran 19537-14453, Iran
2Earthquake Engineering, International Institute of Earthquake Engineering and Seismology, Tehran 19537-14453, Iran

ABSTRACT
Earthquake finite fault simulations confront time-consuming and complex calculations. Therefore, finding 

methods that result in rapid calculations generalized with sufficient accuracy is predominantly necessary. Differ-
ent methods of finite fault surface integrals for the 2004 Mw 6.1 Parkfield earthquake have become the subject of 
the current study to achieve a fast and accurate calculation of earthquake finite fault simulation. Calculations are 
performed considering fault elements carried out with constant and variable source parameters, while interpola-
tion functions can also be considered. The investigations implemented in this research show that changing the 
conventional trapezoidal integration method into Gaussian integration on optimal element size could reduce the 
estimated time of calculations. The surface integral can be done only on one Gaussian point, while the required 
time for calculations can decrease considerably. To simplify the complex structure of Green's function calcula-
tions, a constant Green's function can be assumed in a half-space, with a time shift corresponding to the arrival 
time of the fault rupture representing the Green's function for other sub-faults.
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1. Introduction

Earthquake rupture can be analyzed through two 
types of models: kinematic and dynamic. Kinematic 
models focus on the fault’s slip without linking it to the 
stresses that induce it, whereas dynamic models take 
into account the entire fracture process, connecting 
fault slip to the stresses in the fault area. In kinematic 
earthquake rupture, the slip vector is defined as the 
coordinates on the fault plane and the time. This ap-
proach simplifies the determination of the associated 
elastic displacement field [1].

The representation theorem in the context of 
seismic waves generated by faults allows us to model 
and analyze how energy is radiated from a buried fault 
during slip. It can be summarized in the following key 
steps:

If the earth is modeled as an elastic solid, the dis-
placement field resulting from a point dislocation can 
be considered a Green’s function for the earthquake 
faulting problem. The displacement field at all points 
in the earth due to an arbitrary slip distribution on a 
fault is expressed as an integral over the fault surface, 
incorporating the slip distribution with Green’s func-
tion. The slip distribution introduces linearity into the 
integral, allowing it to be derived to solve a linear prob-
lem where the recorded ground motion at the earth’s 
surface is taken as data [2].

∫ ∫∫
+∞

∞− Σ

Σ= dvtxGcudtxu kqipjkpqji ),,,()],([),( , τετετ  (1)

The first integral in equation 1 is a convolution in 
time. The second is over the fault surface Σ . Σ  is illus-
trated as a plane striking along an arbitrary axis with a 
specific dip. The vector kv , gives the unit normal to the 
fault surface. jkpqc  is the elastic constant. qipG , is the 
derivative of G  known as the Green’s function. Green’s 
function utilized in the representation theorem rep-
resents the medium’s response to a point force in the 
absence of discontinuities. This Green’s function can be 
employed to satisfy any boundary condition on the fault 
surface; thus, the elastodynamic equations need only be 
solved once. The representation theorem is tailored to 
the scenario where the stress field remains continuous 

across the fault surface, while only the displacement 
field is permitted to be discontinuous.

The process of simulating earthquake ground mo-
tion has significant implications for seismological appli-
cations. For example, solving forward problems forms 
the basis of analyzing inverse problems. Forward prob-
lems are typically well-posed, possessing a unique solu-
tion that remains stable against small variations in the 
initial values; in contrast, inverse problems are often 
ill-posed and non-unique. Non-linear inverse problems 
represent a particularly challenging subset of inverse 
problems, where numerous forward problems may be 
in progress. Ultimately, we need to develop methods to 
reduce the extensive computation time associated with 
forward problems. In this research, we explore various 
simulation integration methods that lead to faster and 
more accurate solutions.

The practice of numerically simulating time series 
can be traced back to the contributions of Hartzel [3] and 
Irika [4]. The simulation methods have been expanded 
to incorporate stochastic representations of source and 
path effects [5], theoretical full waveform Green’s func-
tions [6], or various combinations of these techniques. 
Hartzel et al. [7] provided a detailed comparison of sev-
eral kinematic simulation methods. When employing 
hybrid methods to simulate earthquake ground motion, 
it is common to differentiate between high-frequency 
and low-frequency components, specifically around 1 
Hz. The low-frequency component is usually modeled 
using deterministic methods, which provide a theoreti-
cally sound depiction of fault rupture and wave propa-
gation. In contrast, high-frequency components are 
typically generated using stochastic models due to their 
inherently random characteristics.

2. Finite Fault Integration

To solve the forward problem of equation 1, we 
should first discuss various methods of solving a nu-
merical integration. Numerical integrations can be 
computed using a variety of techniques. The fundamen-
tal challenge in numerical integration is to calculate 
an approximate solution to an integral. The simplest 
method of this type is to let the approximated function 
be constant (a polynomial of zeroth order) that passes 
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through the points known as midpoints. This is called 
the midpoint rule or rectangle rule.

A typical technique for approximating calcula-
tions is trapezoidal integration. This method employs 
linear approximation (a polynomial of order one) and 
converts the function into a trapezoidal series before 
calculating the integral.

Simpson’s rule is another method of integration 
based on a polynomial of order two. In Simpson’s Rule, 
we use parabolas for approximation. This proves to be 
very efficient since it’s generally more accurate than the 
other numerical methods. 

In complex functions that cannot be integrated 
easily, instead of calculating the integral analytically, 
the value of the function at certain points is multiplied 
by weighting factors, and the values at the determina-
tion points are summed with each other. The Gaussian 
integration method is an approximate method that is 
done by approximating a series of Gaussian points with 
specific weights. 

In finite fault forward problems, the temporal 
and spatial distribution of source parameters play an 
important role in ground motion simulations, they can 
be used to predict ground motions for engineering de-
sign purposes and to study the effects of complex earth 
structures. The source parameters in each sub-fault can 
have a constant or variable distribution, and as a result, 
integration on the entire surface of the fault creates the 
ground motion on the earth’s surface. Integration can 
be done on a zeroth order approximation known as 
constant distribution while variable distribution relies 
on greater order approximated functions known as in-
terpolation functions. A constant distribution is insuffi-
cient to describe the fault failure process, so an interpo-
lation function could be used to describe the variability 
of source parameters.

In corresponding research, Custadio et al. [8] used 
a linear interpolation function with first order to invert 
the 2004 Parkfield earthquake. Liu and Archuleta [9] 
introduced a type of linear interpolation function to 
investigate the slip changes on each sub-fault of the 
1989 Loma Prieta earthquake. Babuska and Suri [10] dis-
cussed that interpolation accuracy could be increased 
by increasing the order of the interpolation function 

while Liu and Archuleta [9] discussed that If a higher-or-
der interpolation is employed, synthetic seismic wave-
forms from a sub-fault are no longer linearly related to 
the slip amplitudes of each corresponding node. The 
higher-order interpolation will also impose a stronger 
spatial correlation among the source parameters. Liu 
and Archuleta [9] showed that Numerical methods with 
higher-order interpolation make the inversion converge 
significantly more slowly. Bi-cubic spline interpolation 
requires over five times the CPU time compared to lin-
ear interpolation for the same problem.

3.  Finite Fault Discretization and 
Parameterization

To solve forward problems in finite fault solutions, 
it is necessary to perform a discrete shape of the fault 
plane. As a result, the fault surface is divided into sub-
faults, and each sub-fault is parameterized by a specific 
amount of slip, rise time, and rupture time along the 
strike and dip angles. Olson and Apsel [11] provided a 
method to estimate the surface integral using constant 
elements, where locations within each element were as-
sumed to experience the same slip over a specified time 
shift. By assuming constant slip among each sub-fault, 
the slip function on the fault surface can be expressed 
using the following equations:

∑ ∑
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The first sum is over J  cells, the second sum de-
fines the slip within thj  sub-fault . the vector jks  is the 
slip direction at the thj  cell at the thk  time point and 
has two components on the plane. ),( txPk  contains the 
time dependence of the thk  slip. By substituting equa-
tion 2 in equation 1 we obtain equation 3:
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where ),( ttxg i
j δ+  is the Green’s function for the thj  cell 

https://en.wikipedia.org/wiki/Simpson%27s_rule
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at the position x  in the thi  Component direction. since 
jks and ),( ttxg i

j δ+  are two-component vectors, the total 
number of scalar parameters is )12(2 +KJ . It is pos-
sible to express equation 3 in matrix form and solve the 
forward problems accordingly.

4. Finite Fault Interpolation

Interpolation functions can be developed in one, 
two, or even three dimensions These functions are 
obtained by formulating finite element method (FEM) 
equations. The studied interpolation functions in this 
research are in two dimensions and are used for finite 
elements that are continuous with zeroth order. In this 
sense the only zero-order derivative of the displace-
ment field at the boundaries of each element is con-
tinuous. The purpose of FEM is limited to the medium 
divided into several finite elements following equations 
of algebraic rules and solving a system of algebraic 
equations is the approximate solution of a forward 
problem.

Finite elements could have different shapes. Rec-
tangular elements are convenient for use in modeling 
a regular geometric space. Liu and Archuleta [9] used 
quadrilateral elements that do not have to be rectangu-
lar or equal in area to model the variability of simula-
tion parameters. If the quadrilateral element is rectan-
gular, then linear interpolation can be applied directly.

The state of the rectangular element is a rectangle 
with four nodal points. It is assumed that the length 
and the width of the rectangle be parallel to the Carte-
sian coordinates and the numbering of the nodal points 
Conventionally should be counter-clockwise (Figure 
1).

Figure 1. Quadrilateral elements described by 4 nodal points 
in a two-dimensional environment including 1 integral point 
(left), 4 integral points (middle), and 9 integral points (right). 
x and h are local coordinates.

In such elements we deal with four points and 
necessarily confront four degrees of freedom for our al-

gebraic equation and any desired parameter on the ele-
ment can be described by a polynomial with four terms 
as below:

xhhxhxφ 3210),( aaaa +++= (4)

The relation of this function is complex and can be 
solved by selecting an appropriate coordinate. We con-
sider h and x as local coordinates (shown in Figure 1) 
and accordingly achieve a new equation as below:

44332211 ),(),(),(),(),( φhxφhxφhxφhxhxφ NNNN +++=  

44332211 ),(),(),(),(),( φhxφhxφhxφhxhxφ NNNN +++=
(5)

),( hxφ  represents the interpolation parameter 
and 4321 ,,, φφφφ  represent parameters at the nodal 
points. 4321 ,,, NNNN are known as shape functions de-
scribed below:
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Assuming linear changes of the parameters inside 

the rectangular element, the coordinates ),( yx of any 
arbitrary point inside the element are obtained by the 
following equations:
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e introduces the element index. iN  is the shape 
function related to nodal points. 

Similarly, any simulation parameters within the 
element can be acquired through linear interpolation of 
the nodal values of the elements as follows:

∑
=

=
4

1
),(),(

i

e
ii

e mNm hxhx (8)

Where ),( hxem  could include various simulation pa-
rameters such as the slip value, rake angle, rupture 
velocity, and rise time. Within each element or sub-
fault, it is feasible to simulate the waveform radiated 
from rupture through a series of point dislocations that 
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cover the fault. Figure 2 illustrates the discretization of 
a finite fault surface model. In this context, the source 
parameters are represented by nodal points (black 
stars). The Green’s functions are computed within each 
sub-fault at the points indicated by white triangles, 
and the surface integration of equation 1 is performed 

at the black dots. xN  points along the strike and hN  
points along the dip are assigned within each element 
at equal distances from one another Following this dis-
cretization  procedure, equation 1 can be reformulated 
as equation 3, where J  represents the total number of 
integration points (black dots in Figure 2). Assuming 
that all elements or sub-faults have rectangular shapes, 

the local coordinate (x ,h )within each sub-fault can be 
defined as:

hh

x

h

x
x
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N
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N
j
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=

=−
−

=

(9)

The source parameters may exhibit continuous 
variation throughout the entire fault, although their 
values are not smooth at the nodal points. Furthermore, 
the radiated wave from each sub-fault depends on the 
source parameters of four nodes within each sub-fault, 
rather than relying solely on one parameter as is the 
case with constant elements.

Figure 2. Sample model of discretization of the fault surface.

5.  An Overview of the 2004 Mw 6.1 
Parkfield Earthquake 

The 2004 Mw 6.1 Parkfield earthquake is a well-
documented event that fulfills all the necessary criteria 
for this inquiry. It occurred in the Parkfield area of 
California’s central coast at 17:15:24 (UTC) on Septem-
ber 28, 2004. This earthquake produced a significant 

amount of strong ground motion data, with over 40 re-
cording stations located within 32 km of the epicenter. 
The California Geological Survey (CGS) and the U.S. 
Geological Survey (USGS) captured the strong motions 
of the event using accelerometers [12].

To analyze the kinematic finite-fault characteris-
tics of the 2004 Mw 6.1 Parkfield earthquake, Custodio 
et al. [8] Applied a non-linear global inversion to various 
subsets of near-source ground motion data, resulting 
in a slip model with amplitudes of less than 0.65 m in 
two areas along the fault. Ji [13], determined a varying 
slip distribution through low-frequency waveform in-
version and identified two specific regions of interest. 
Dreger et al. [14] presented a two-dimensional source 
model using near-field GPS records, which aligned with 
the distribution of 39 aftershocks that occurred within 
48 hours of the initial earthquake. Johanson et al. [15] 

simultaneously analyzed InSAR and GPS data to study 
the co-seismic and post-seismic patterns. Additionally, 
Mendoza and Hartzell [16] calculated the co-seismic slip 
using both synthetic Green’s functions based on a flat-
layered 1D velocity model and empirical Green’s func-
tions derived from a Mw 5.0 aftershock.

In this survey, the source model of the 2004 Mw 
6.1 Parkfield earthquake reported by Custodio [8] is uti-
lized to solve several forward problems (Figure 3). The 
chosen model is a strike-slip fault with a strike of 140 
degrees, a dip of 87 degrees, and a length of 40 km. 

We utilized strong motion records from 26 CGS 
stations surrounding the epicenter, which offer compre-
hensive azimuthal coverage (Figure 4). The epicenter is 
positioned at a latitude of 35.81 degrees and a longitude 
of -120.37 degrees [17]. For the simulation analysis, we ana-
lyzed the velocity waveforms for comparison, filtering all 
waveforms and Green’s functions with a 4th-order Butter-
worth band-pass filter featuring a linear phase response 
in the frequency range of 0.16 to 1.00 Hz.

In order to compute the synthetic seismograms for 
each station, we must calculate the Green’s function at 
any point on the fault surface and then convolve it with 
the specific source parameter at that point. The Green’s 
functions are computed using the AXITRA code [18] and the 
frequency-wavenumber method of Bouchan [19]. The 1D 
velocity structure is employed in the computation of the 
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Green’s functions [20] (Table 1).

Figure 3. 2004 Mw 6.1 Parkfield slip model.

Figure 4. Location of the 2004 Mw 6.1 Parkfield earthquake 
and 26 stations utilized in this study. The epicenter is 
indicated by a red star. The blue line represents an overview 
of the San Andreas fault.

Table 1. P-wave and S-wave velocity structure.

Thickness 
(m)

Vp (m/s) Vs (m/s)
Density (kg/
m3)

Qp Qs

1000 1900 1000 2000 70 35

1000 3400 1700 2300 270 160

1000 4600 2400 2300 450 260

1000 5100 3100 2700 500 300

1400 5600 3600 2700 550 350

13300 6300 3600 2800 600 350

20000 6800 3600 2800 680 360

6. TF Goodness-of-Fit Criteria for 
Quantitative Comparison of 
Time Signals

Comparing two signals with significantly different 

envelope phases is often crucial. Such comparisons are 
typically used to assess the validity of new theoretical 
models or analytical methods. Kristekova et al. [21] intro-
duced an extension of the Time-Frequency (TF) misfit 
criteria that enables a quantitative and objective com-
parison of observed and synthetic time signals. The TF 
representation allows for the analysis of spectral con-
tent at any given moment and the time history at any 
frequency. To assist in comparing the two signals, Kris-
tekova et al. [21] developed a method for analyzing the 
envelopes of the TF representation and their associated 
phases. By evaluating the differences in envelope and 
phase at specific TF points, they proposed a normalized 
TF misfit criterion that ranges from zero—which indi-
cates the least similarity—to ten, which shows the high-
est level of agreement between the two signals. Figure 
5 displays the numerical values for the goodness-of-fit 
(GOF) criteria, along with verbal classifications for the 
overall signal comparison.

The envelope-phase misfits are primarily useful 
for comparing relatively close envelopes-phases in the 
simulation process, particularly when there are too 
many simulated waveforms to present, the framework 
proposed by Kristekova et al. [21] is more robust and ob-
jective from both mathematical and signal processing 
perspectives and is employed for making comparisons 
between observed and simulated time histories in this 
study.

Figure 5. Discrete goodness-of-fit numerical and verbal 
values.
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7. Finite Fault Simulation for the 
2004 Parkfield Earthquake

In this section various surface integral calculations 
containing: constant, linear, and Gaussian approxima-
tions are examined to solve the forward problem of the 
2004 Parkfield earthquake. The main purpose of this 
survey is to investigate the accuracy and calculation 
time derived from each method and reach the most ac-
curate and rapid solution. We also discuss how chang-
ing the element size can affect our results. To measure 
the accuracy of our solution the GOF value presented by 
Kristekova et al. [21] has become our benchmark.

7.1. Constant and Linear Integration

To calculate the mentioned forward problem, the 
fault surface discretization and parametrization must 
be done as discussed in Section 2. According to Figure 
2, Green’s function for each sub-fault is evaluated on 
the points shown with white triangles, and the source 
parameters are known on nodal points (black stars). 
Green’s functions are calculated separately and multi-
plied by the source parameters, and the forward prob-
lem is determined using a constant or linear integration 
on the fault surface. While the constant values of source 
parameters on nodal points are used in calculation we 
consider a constant (zeroth order) integration (P = 0). 
The second approach arises when the source param-
eters are not constant anymore and to display the vari-
ability of source parameters some internal points are 
considered in each sub-fault (Figure 2). If the source 
parameters pursue a linear function (interpolation 
function) adopted from internal points then the solu-
tion is known as linear integration (P = 1). There can 
be various configurations of this type depending on the 
number of integrated points (Figure 6).

In our inquiry, the fault surface is discretized into 
21 × 9 sub-faults measuring 1.9 × 1.7 (km) in the strike 
and dip angles, respectively, which is the size that Cus-
todio [8] considered for inversion studies.

In our initial analysis, a constant element is taken 
into account. We consider 21 × 9 sub-faults measuring 
1.9 × 1.7 (km) in the strike and dip angles, along with a 

coarser arrangement of 7 × 3 sub-faults measuring 5.7 ×  
5.1 (km) in size in the strike and dip directions.

Simulation No. 1 and 2 in Table 2 and Table 3 
respectively show the GOF envelope and phase values 
obtained by constant integration. The results show that 
a higher GOF is achieved when 21 × 9 sub-faults are 
presented. Consequently, simulation No. 1 represents a 
more accurate dimension for the sub-fault rather than 
simulation No. 2.

In the second approach, different simulation cases 
with various interior points are considered using linear 
interpolation functions. Additionally, each sub-fault can 
be further discretized for a finer Green function calcula-
tion. Figure 6 shows various configurations of Green’s 
functions and interior points. Green’s functions are 
evaluated on points marked with white triangles within 
each sub-fault, and the surface integration is calculated 
on black dots.

(a)

(b)

(c)

Figure 6. Each sub-fault is divided into elements that 
represents a finer grid spacing for simulation computation. 
The elements contain 1, 4, and 9 internal points from left to 
right, respectively. In sub-figure (a) the sub-fault is divided 
into 4 elements; in sub-figure (b), into 9 elements; and in 
subfigure (c), into 16 elements. The white triangles indicate 
the position for Green’s function calculation and are referred 
as Green’s points.
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Table 2. Goodness-of-fit verbal value comparison on EW, NS, and UP components.

sim. no. Ns
e Nd

e Ds
e (m) DD

E (M) Ns
g Nd

g xN hN GOFEW GOFNS GOFUP

P = 0 1 7 3 5700 5100 1.22 1.15 1.43
2 21 9 1900 1700 3.02 3.22 2.15

P = 1 3 7 3 5700 5100 4 4 3 3 3.97 3.76 3.24
4 21 9 1900 1700 1 1 1 1 4.70 4.65 4.60
5 21 9 1900 1700 1 1 2 2 4.67 4.61 4.50
6 21 9 1900 1700 1 1 3 3 4.68 4.62 4.54
7 21 9 1900 1700 2 2 1 1 4.80 4.67 4.46
8 21 9 1900 1700 2 2 2 2 4.78 4.67 4.47
9 21 9 1900 1700 2 2 3 3 4.78 4.68 4.48
10 21 9 1900 1700 3 3 1 1 4.85 4.69 4.47
11 21 9 1900 1700 3 3 2 2 4.83 4.69 4.48
12 21 9 1900 1700 3 3 3 3 4.84 4.69 4.47
13 21 9 1900 1700 4 4 1 1 4.83 4.68 4.49
14 21 9 1900 1700 4 4 2 2 4.83 4.69 4.49
15 21 9 1900 1700 4 4 3 3 4.84 4.69 4.49

Gauss 16 21 9 1900 1700 1 1 1 1 4.99 4.80 4.56
point 17 21 9 1900 1700 1 1 2 2 5.00 4.76 4.49

18 21 9 1900 1700 1 1 3 3 4.90 4.71 4.47

NS
E, ND

E : the number of sub-faults along the strike and dip of the fault respectively; DS
E, DD

E: the size of the sub-faults along the strike and dip of the fault 

respectively; NS
G, ND

G: the number of elements at each sub-fault used for Green’s function calculation along  the strike and dip of the fault respectively; xN , hN

: the number of integration points in each element along the strike and dip of the fault respectively; GOFEW, GOFNS, GOFUP: average of goodness-of-fit verbal values 

among 26 stations along EW, NS, UP components respectively; P: the order of interpolation. P = 0 refers to the constant element and P = 1 corresponds to the 

linear element.

It can be seen from Table 2 and Table 3, that the 
GOF value increases as the sub-fault size decreases. 
Looking at the results of linear elements (P = 1), we see 
a kind of trade-off between the size of the sub-faults 
and the number of Green’s functions in each sub-fault. 
However, comparing simulation cases 3 and 4 in Table 
2 and Table 3, the effect of sub-fault size is more signif-
icant. In simulation case 3, the initial sub-fault size is 5.7 
× 5.1 (km) along strike and dip respectively, with 16 el-
ements of Green’s function and 9 integration points and 
the distance between Green’s points is smaller in Case 3 
while Case 4 has a higher GOF value, more sub-faults (21 
× 9), and only one element and one integration point. 
This can be linked to the size of the asperities on the 
fault. Consequently, the dimensions of sub-faults should 
be sufficiently small to capture the variability of slip on 
the fault surface, particularly at the locations of asperi-
ties.

Simulation cases 4–15 illustrate the effects of 
varying the number of Green’s and integration points 
within each sub-fault. It is evident that when the sub-
fault size is fixed at 1.9 × 1.7 (km), increasing the num-

ber of Green’s and integration points does not signifi-
cantly alter the value of GOF. For instance, by examining 
simulation cases 4 and 15, it’s evident that the number 
of Green’s elements in the latter case 15 is 16 times 
greater, and the number of integration points is 9 times 
larger. Meanwhile, the GOF values in the EW direction 
range from 4.67 to 4.84, reflecting approximately 4% of 
variability. 

In fact, from a computational perspective, this is 
not a significant case, while the computational cost of 
the analysis rises considerably as the number of Green’s 
points in each sub-fault increases. It is noteworthy that 
the most intensive and computation-heavy aspect of 
finite fault modeling is the calculation of Green’s func-
tion. The results in Table 2 and Table 3 show that in-
creasing the number of Green’s points in each sub-fault 
does not significantly improve the simulation accuracy 
and, consequently, we should search for an acceptable 
criterion that defines an optimal computational ele-
ment size in calculations.

At a given frequency, there should be an appropri-
ate relationship between fault element size, seismic 
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wave propagation, and data; Therefore, the selection of 
suitable element dimensions can be influenced by the 
following factors:

1-The data has been filtered up to 1 Hz, therefore 
the elements should be able to cover the 1 Hz frequen-
cy range as well. There must be a good compatibility 
between the smallest data wavelength and the small-
est dimensions of the grid so that the wavelength of the 
data must be greater than the dimensions of the grid [11].  
The maximum data frequency is 1 Hz, which corre-
sponds to a period of 1 second, so the minimum wave-
length of the data can be obtained by the relation: λmin 
= v/fmax where v is the wave velocity and fmax is the 
maximum frequency. Considering the different values 
of P wave velocity, the minimum value of wavelength 
also changes, as shown in Table 4. If we select the mini-
mum velocity (1900 m/s), we achieve the minimum 
wavelength, which is 1.9 km. This quantity is compared 
with the dimension of the corresponding length of sub-

faults in our study. By choosing the maximum wave ve-
locity (6800), the selected element dimension for width 
(1.7 km) is proportional to 0.25 of the P wavelength 
(6800 m). Note that the P wave velocity is higher and 
includes higher frequencies. As a result, a ratio of the P 
wavelengths can be considered as a suitable criterion 
for choosing the optimal dimensions of sub-faults. The 
selected sub-fault dimension is about 5% of the fault 
length along the strike and 10% of the fault width along 
the dip and this factor can also be used as a criterion in 
sub-fault division. 

2-Velocity models represent the wave velocity in 
different layers and indicate the maximum frequency 
that can be read and consequently limit the wave-
lengths that can be simulated. The velocity model con-
sidered for the 2004 Parkfield earthquake, covers the 
frequency range of 1 Hz and higher as well. A more ac-
curate identification of the velocity model allows higher 
frequency modeling.

Table 3. Goodness-of-fit phase value comparison on EW, NS, and, UP components.

sim. no. Ns
e Nd

e Ds
e (m) DD

E (M) Ns
g Nd

g xN hN GOFEW GOFNS GOFUP

P = 0 1 7 3 5700 5100 4.90 4.76 4.48

2 21 9 1900 1700 4.97 5.10 4.55

3 7 3 5700 5100 4 4 3 3 4.62 4.97 4.59

4 21 9 1900 1700 1 1 1 1 5.57 5.64 4.62

5 21 9 1900 1700 1 1 2 2 5.57 5.60 4.57

6 21 9 1900 1700 1 1 3 3 5.57 5.62 4.59

P = 1 7 21 9 1900 1700 2 2 1 1 5.85 5.75 4.63

8 21 9 1900 1700 2 2 2 2 5.83 5.74 4.66

9 21 9 1900 1700 2 2 3 3 5.84 5.74 4.67

10 21 9 1900 1700 3 3 1 1 5.87 5.79 4.58

11 21 9 1900 1700 3 3 2 2 5.85 5.76 4.61

12 21 9 1900 1700 3 3 3 3 5.86 5.77 4.61

13 21 9 1900 1700 4 4 1 1 5.86 5.75 4.65

14 21 9 1900 1700 4 4 2 2 5.86 5.74 4.67

15 21 9 1900 1700 4 4 3 3 5.86 5.75 4.66

Gauss 16 21 9 1900 1700 1 1 1 1 5.99 5.84 4.67

point 17 21 9 1900 1700 1 1 2 2 6.08 5.96 4.64

18 21 9 1900 1700 1 1 3 3 6.11 6.01 4.64

NSE , NDE  : the number of sub-faults along the strike and dip of the fault respectively; DSE, DDE: the size of the sub-faults along the strike and dip of the fault 

respectively; NSG, NDG: the number of elements at each sub-fault used for Green’s function calculation along  the strike and dip of the fault respectively; xN , hN :  

the number of integration points in each element along the strike and dip of the fault respectively; GOFEW, GOFNS, GOFUP: average of goodness-of-fit verbal values 

among 26 stations along EW, NS, UP components respectively; P: the order of interpolation. P = 0 refers to the constant element and P = 1 corresponds to the 

linear element.
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Table 4. Minimum wavelength for different velocities.

Thickness (m) Vp (m/s) λmin (m)

1000 1900 1900

1000 3400 3400

1000 4600 4600

1000 5100 5100

1400 5600 5600

13300 6300 6300

20000 6800 6800

7.2.  Gaussian Integration

In this section, it is assumed that the integration is 
done on Gaussian points. In simulations No. 16, 17, and 
18 of Table 2 and Table 3, values of the GOF envelope 
and phase obtained by the Gaussian integration method 
considering 1,4,9 Gaussian points, are presented. The 
obtained values reveal considerable accuracy.

While the forward problem is a time-consuming 
process, we need to decrease the calculation time re-
quired in integration; Therefore, we have studied a 
great comparison between the speed of the calculations 
performed in our simulation process, which covers 
simulation numbers 4–18. In Table 5, a report of time 
calculations of Green’s function, surface integration, 
and total simulation process is shown. 

The processing personal computer is equipped 
with a 5-core CPU, 1 GB of RAM, and a 500 GB storage 
capacity. For our calculations, we utilized MATLAB as 
the programming language. The average computing 
time provides a general idea of the computational cost 
for the integration processes and the standard devia-
tion indicates the consistency of the execution times. 
According to Table 5, we computed the average of 
the total time of calculations and the standard devia-
tion related to them. The average total time used for 
simulations is approximately 104.05 minutes, and the 
standard deviation is approximately 63.32 minutes. 
This result suggests a notable variation in execution 
times, emphasizing both the potential for optimization 
and the need for careful consideration of computational 
consistency.

Results show that choosing Gaussian points has 

increased the speed of calculations considerably and 
the higher GOF value presents a better compatibility in 
modeling. Simulation No. 16 of Table 5, whose calcula-
tion speed is signed with a red asterisk, shows that the 
surface integral can be done on only one Gaussian point 
at a higher speed, and consequently, the necessary time 
for calculations decreases 10 times more in compari-
son with simulation number 15, where 9 non-Gaussian 
points with 16 Green’s elements were used. Hence, 
it’s possible to do the integration on only one Gauss-
ian point on the appropriate sub-fault size and reach a 
more accurate and rapid solution.

7.3.  Uncertainty Quantification in Simula-
tion

Understanding the influence of variability in 
source parameters and Green’s functions is key to 
assessing the robustness of the simulation analysis. 
Sampling the probability distributions of results based 
on the uncertainties is an essential step in uncertainty 
quantification. To evaluate the effect of variability in 
source parameters and Green’s functions, the mean 
value and standard deviation of GOF values of EW com-
ponents are calculated.

There are uncertainties in the number and size of 
sub-faults, which vary from 7 × 3 subfaults with a size 
of 5.7 × 5.1 (km) to 21 × 9 sub-faults with a size of 1.9 
× 1.7 (km). In this case, simulations number 1 and 2 
are compared, considering constant values for source 
parameters and Green’s functions. The calculated mean 
of GOF values for the EW components is approximately 
2.12, with a standard deviation of 1.27, which is con-
siderable. Therefore, Selecting the appropriate size for 
simulation would be a big target.

In another case we consider variables for Green’s 
functions and source parameters, the number of ele-
ments related to Green’s functions varies from 1 to 16 
in each subfault, and the number of integration points 
related to source parameters varies from 1 to 9 in each 
element. Considering simulations 4, 5, and 6, there is 
one element in each sub fault and the integration points 
vary from 1 to 4 and 9 points respectively, the calcu-
lated mean of GOF values for the EW components is 
achieved at approximately 4.68, with a standard devia-
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tion of approximately 0.015. The very small standard 
deviation suggests a high level of consistency in the 
GOF across simulations, indicating that the simula-
tion approach is robust under the tested parameters. 
Since all values are close, it appears that there are no 
drastic fluctuations. While we consider simulations 4, 
7, 10, and 13, the number of elements increases from 
1 element to 4, 9, and 16 elements respectively, and 
the integration points related to source parameters 
are considered 1. In this case, the calculated mean of 
GOF values is approximately 4.8, with a standard devia-
tion of approximately 0.067. The standard deviation is 
higher than when only the number of integration points 
changed. This result shows that the effect of increasing 
the number of Green’s functions has more influence 
than increasing the number of integration points re-
lated to source parameters. In the next step simulation 
number 4 with 1 element and 1 integration point and 
simulation number 16 with 1 element and 1 Gaussian 
integration point are considered. In this case, the mean 
of GOF values is achieved at approximately 4.84 with a 

standard deviation of approximately 0.2 which points 
out how considering a Gaussian point could affect the 
simulation result.

7.4. Quantitative Study of Green’s Function 
in the Simulation

While the calculation of Green’s function is a very 
sensitive and time-consuming part of fault modeling, 
we are having a short inquiry in this area.

To gain a clearer understanding of how the vari-
ability of Green’s functions affects the simulation re-
sults, this study compares the velocity waveforms of 
the moment tensor elements of Green’s functions for 
two-point sources. As shown in Figure 7, it is assumed 
that A and B are point sources situated within a specific 
sub-fault area in a half-space.

As shown in Figure 8, the moment tensor ele-
ments of Green’s function are quite similar to one 
another, indicating the validity of the assumption of a 
constant Green’s function, with only time shifts among 
each sub-fault. The waveforms in Figure 8 are adjusted 

Table 5. A timetable of simulation calculations from simulation 4–18.

sim. no. Ns
e Nd

e Ds
e (m) DD

E (M) Ns
g Nd

g xN Nη
G_time
(min)

int_time
(min)

A_TIME
(MIN)

Ratio

P = 1 4 21 9 1900 1700 1 1 1 1 37.76 00.15 38.00 6.69

5 21 9 1900 1700 1 1 2 2 37.76 00.55 39.87 6.38

6 21 9 1900 1700 1 1 3 3 37.76 03.15 41.96 6.06

7 21 9 1900 1700 2 2 1 1 82.32 01.34 83.66 3.04

8 21 9 1900 1700 2 2 2 2 82.32 05.00 87.32 2.91

9 21 9 1900 1700 2 2 3 3 82.32 10.42 93.74 2.71

10 21 9 1900 1700 3 3 1 1 138.80 03.35 142.15 1.79

11 21 9 1900 1700 3 3 2 2 138.80 11.43 150.23 1.69

12 21 9 1900 1700 3 3 3 3 138.80 24.45 163.25 1.55

13 21 9 1900 1700 4 4 1 1 206.99 07.00 213.99 1.18

14 21 9 1900 1700 4 4 2 2 206.99 20.00 226.99 1.12

15 21 9 1900 1700 4 4 3 3 206.99 47.55 254.54 1

Gauss 16 21 9 1900 1700 1 1 1 1 28.14 00.07 28.21 9.02*

point 17 21 9 1900 1700 1 1 2 2 28.14 00.25 28.39 8.96

18 21 9 1900 1700 1 1 3 3 28.14 01.53 29.67 8.57

NS
E, ND

E  : the number of sub-faults along the strike and dip of the fault respectively; DS
E, DD

E: the size of the sub-faults along the strike and dip of the fault 

respectively; NS
G, ND

G: the number of elements at each sub-fault used for Green’s function calculation along  the strike and dip of the fault respectively; xN , hN :  
the number of integration points in each element along the strike and dip of the fault respectively; GOFEW, GOFNS, GOFUP: average of goodness-of-fit verbal values 

among 26 stations along EW, NS, UP components respectively; P: the order of interpolation. P = 0 refers to the constant element and P = 1 corresponds to the 

linear element; G_time: the time required for Green’s function calculation; int_time: the time required for integration; A_time: G_time + int_time; Ratio: the ratio 

between each simulation and simulation 15.
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to better highlight the similarity of the signals.

Figure 7. Two specific point sources have been identified to 
compare Green’s function components. The red star shows 
the location of the epicenter.

According to the distribution of Green’s points and 
interpolation points within each sub-fault, if the size 
of the sub-fault is sufficiently small and falls within the 
limits of the asperity size and the resolution of the ve-
locity model, it can be assumed that a constant Green’s 
function exists for every sub-fault located in a layer, with 
only a time shift dependent on the arrival time of the 
failure. Consequently, Green’s functions at various points 
of a sub-fault can be calculated rapidly in this manner.

Figure 8. Velocity waveform of Green’s function moment 
tensor elements for the CH1E station. The left-handed Figures 
correspond to the EW component, the middle figures belong 
to the NS component, and the right figures pertain to the UP 
component.

8.  Discussion and Conclusions

Parameterization and discretization of finite fault 
surfaces significantly impact the results of finite fault 
simulations. Various simulation analyses indicate that 

employing an appropriate mesh size and enhancing the 
order of interpolation have substantial effects on finite 
fault simulations. 

While the uncertainty quantification of results re-
lies on the importance of choosing a suitable sub-fault 
size, a multiple of P wavelength can serve as an effec-
tive criterion for the sub-fault dimension. The findings 
of this study demonstrate that selecting 5% of the fault 
length in the strike direction and approximately 10% 
of the fault width in the dip direction can be an effec-
tive criterion for determining an appropriate sub-fault 
dimension. The results indicate that Gaussian integra-
tion on the finite fault surface yields a more accurate 
and faster calculation in earthquake simulations. The 
surface integral can be performed at just one Gaussian 
point with increased speed, thereby significantly reduc-
ing the time required for calculations. Additionally, the 
findings suggest that if the size of the sub-fault is suf-
ficiently small relative to the size of asperities and the 
resolution of the medium’s velocity model, it is a valid 
assumption to treat the Green’s function as constant in 
a half-space and compute the remaining Green’s func-
tions solely by applying a time shift corresponding to 
the rupture time. This would represent a significant 
advancement, considering the considerable computa-
tional demands of calculating Green’s functions in finite 
fault inversions and forward modeling.

To adapt methods from the Parkfield earthquake 
to other seismic events, it’s crucial to understand the 
target’s specific characteristics, such as magnitude, 
geometry, and geology. Larger earthquakes require a 
coarser mesh in numerical models due to their broader 
seismic wave propagation, while smaller earthquakes 
can use larger element sizes without losing significant 
detail. However, it is essential to balance the element 
size with the resolution needed to capture specific 
features of the simulation, such as fault behavior and 
local site effects. In regions where these features are 
critical to the simulation, smaller elements may still be 
necessary to capture the details accurately. The perfor-
mance of Gaussian integration might be less sensitive 
to element size changes in straightforward geometrical 
scenarios. For more homogeneous geological settings, 
larger element sizes may suffice, leading to a more 
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straightforward application of Gaussian integration 
with potentially greater computational efficiency.
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