Earth and Planetary Science | Volume 03 | Issue 02 | October 2024

2 N AS S Earth and Planetary Science
%

A NG ACADEY O NGRS https://journals.nasspublishing.com/index.php/eps

RESEARCH ARTICLE

2.13 Ga Lawsonite/Barroisite-Bearing E-Morb Signature
Metagabbro Associated with Spinel Metaperidotite from Itaguara
(Sao Francisco Craton, Brazil): Oldest Blueschist-Facies Fragment
of Oceanic Moho?
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Abstract: In close association with Paleoproterozoic retroeclogite and accretionary prism-related mica-quartz
schist, a 2.13 Ga (metamorphic titanite U-Pb age) lawsonite/barroisite-bearing E-MORB signature metagabbro
associated with spinel metaperidotite is found in the Itaguara Sequence from southern Sdo Francisco craton,
Brazil. Petrography and pressure-temperature equilibrium phase diagrams suggest that the metagabbro
experienced blueschist-facies metamorphism, attaining peak metamorphic conditions at ~16 kbar and ~450 °C
during subduction. The retrograde metamorphic path crossed epidote amphibolite-facies, in which the mineral
assemblage found in metaperidotite (olivine, clinopyroxene, spinel, serpentine, chlorite, talc, and tremolite) was
stable during a ca. 2.1 Ga continental collision-related exhumation that occurred between the Archean Campo
Belo/Bonfim and Divinépolis complexes. This geological framework suggests that the metagabbro and adjacent
spinel metaperidotite represent a subducted and exhumed blueschist-facies fragment of a Paleoproterozoic
oceanic Mohorovic¢i¢ (Moho) discontinuity, thus establishing the Itaguara metagabbro as the oldest-known
occurrence of retrogressed blueschist and providing evidence for the activity of the modern-style plate tectonics
more than 2 Gyr ago.
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1. Introduction _ _ _
subduction and exhumation processes can be found in

In many orogenic belts, rocks that have undergone  their internal sectors, such as suture zones. To under-

*Corresponding Author:

Alexandre de Oliveira Chaves,

Institute of Geosciences (IGC), Federal University of Minas Gerais (UFMG), Av. Antdnio Carlos, 6627-Pampulha, Belo Horizonte,
MG, CEP 31270-901, Brazil;

Email: alochaves@yahoo.com.br

Received: 30 March 2024; Received in revised form: 16 May 2024; Accepted: 23 May 2024; Published: 14 June 2024

Citation: de Oliveira Chaves, A., 2024. 2.13 Ga Lawsonite/Barroisite-Bearing E-Morb Signature Metagabbro Associated with Spinel Meta-
peridotite from Itaguara (Sdo Francisco Craton, Brazil): Oldest Blueschist-Facies Fragment of Oceanic Moho? Earth and Planetary Science.
3(2): 14-40. DOI: https://doi.org/10.36956/eps.v3i2.1068

DOL: https://doi.org/10.36956/eps.v3i2.1068
Copyright © 2024 by the author(s). Published by Nan Yang Academy of Sciences Pte. Ltd. This is an open access article under the Creative Commons
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/).

14


https://doi.org/10.36956/eps.v3i2.1068
https://doi.org/10.36956/eps.v3i2.1068
https://orcid.org/0000-0002-1291-5553

Earth and Planetary Science | Volume 03 | Issue 02 | October 2024

stand the geotectonic timeline of these belts, it is nec-
essary to estimate the pressure (P) and temperature
(T) paths of high-pressure subduction-related rocks .
Blueschists are rocks that form due to subduction,
indicating high-pressure burial at relatively low tem-
peratures (low T/P rocks) **. The oldest blueschists
known so far are Neoproterozoic, some of which are
found alongside strongly serpentinized plagioclase-
or spinel peridotite . Despite this, it is believed that
subduction of oceanic crust to mantle depths has been
occurring since 3 billion years ago *.. So, a major ques-
tion is: Where are the pre-0.8 Ga blueschists?

An investigation into the Itaguara Sequence (IS) of the
southern Sio Francisco Craton (SFC) has revealed that a
Paleoproterozoic accretionary prism was formed above
a paleo-subduction zone. The study showed that dur-
ing a continental collision at around 2.05 * 0.05 Ga, the
metamorphic peak achieved ~18.5 kbar and ~626 °C ®°.
This episode of syn-collisional metamorphism has
also been regionally described between 2.10 and 2.05
Ga from titanite and monazite geochronology . The
study also found that a 2.20 * 0.05 Ga retroeclogite
with E-MORB signature occurs in IS included in suture
zone formed by a collision between the Archean Campo
Belo/Bonfim and Divin6polis Complexes, close to the
cited accretionary wedge . Similar amphibole eclog-
ite facies metamorphic peak stage of 17-20 kbar and
600-700 °C have been described for these retroeclog-
ites during the same ca. 2.1 Ga continental collision .

Several studies demonstrate that barroisite-bearing
metabasites retrometamorphosed at epidote amphib-
olite-facies have been formed in association with tec-
tonic processes of subduction followed by collision-re-
lated exhumation "%, By using petrography, mineral
chemistry, thermobarometry, geochemistry, and titan-
ite U-Pb geochronology, the petrology of the recently
discovered lawsonite and barroisite-bearing metagab-
bro associated with spinel metaperidotite, which occur
alongside 2.16 Ga amphibolites (zircon U-Pb age '"*)
from the Paleoproterozoic IS, is herein presented.

Lawsonite is a diagnostic mineral of paleo-subduc-
tion zone processes "*'*. Given that the oldest known
occurrences of lawsonite-bearing blueschists are from
Neoproterozoic era ¥, the presence of lawsonite in
these Paleoproterozoic rocks from IS may represent a
new constraint in the age of blueschists on Earth. The
possibility of this rock association to represent the
subduction and exhumation of blueschist-facies frag-
ment of Paleoproterozoic oceanic Mohorovici¢ discon-
tinuity (Moho—boundary between oceanic crust and
mantle) is also herein evaluated.

2. Geological Setting

The Sao Francisco craton (SFC), located in Brazil, is
part of a paleoplate that was consolidated at the end of
the Paleoproterozoic era. It is the South American equiva-
lent of the African Congo Craton ™. The southern region
of SFC is surrounded by Neoproterozoic orogenic belts,
such as the Araguai Belt " in the East and the Brasilia
Belt " in the West (Figure 1A). The Archean core of the
southern SFC, which dates back to 3.2-2.6 billion years
ago, comprises mainly of granite-gneisses terranes "* and
greenstone belts (Figure 1B, 1C). The Rio das Velhas Su-
pergroup is a part of this region and includes a mix of
mafic to ultramafic rocks, intermediate to felsic volcan-
ic with volcanoclastic rocks and clastic sediments "**°,
The Minas Supergroup is relatively younger and is com-
posed of clastic and chemical metasedimentary units,
which includes the Quadrilatero Ferrifero mining district
(Figure 1B) that contains banded iron formations with a
minimum deposition age of ~2.0 Ga *",

Machado Filho et al. *? characterized the Divinpolis
Metamorphic Complex, which is part of the Archean
granite-gneiss basement. Another study in this basement
by Teixeira et al. " identified three complexes—Campo
Belo, Bonfim, and Belo Horizonte (Figure 1B, 1C)—each
consisting of various types of rocks, including gneisses,
migmatites, granitoids, and felsic, mafic and ultramafic
rocks. The Archean core of the southern SFC has un-
dergone four periods of magmatism ***°!, The first
event, known as Santa Barbara, dates back to 3.22-3.20
Ga, and is associated with the formation of the Paleo-
archean Tonalite-Trondhjemite-Granodiorite (TTG)
crust. The second event, Rio das Velhas I, occurred
between 2.92-2.85 Ga, and contributed to the growth
of the crust. The third event, Rio das Velhas II, took
place during the Neoarchean period (2.80-2.76 Ga)
and was followed by a period of convergence and volu-
minous potassic magmatism. This period is believed to
have stabilized the southern part of the SFC between
2.75-2.68 Ga **, and was called the Mamona event ..
A study on the zircon provenance of the sedimentary
record preserved in the Rio das Velhas Supergroup
suggests the presence of a succession of magmatic arcs
and convergent basins in the region until ~2.7 Ga *°,

During the Rhyacian-Orosirian cycle, which took place
around 2.2-1.9 Ga, a significant period of crustal growth
took place in several parts of the SFC and adjacent crus-
tal blocks of South America. This event was previously
known as “Transamazonian” "® and has now been re-
named Minas accretionary orogeny in the southern SFC **.
This period is associated with the accretion of juvenile
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crust that formed the Mineiro Belt **” and led to exten-

sive reworking of terranes located at the margins of the
craton ®". According to Alkmim and Marshak *?, a sig-
nificant part of the southern portion of the Sdo Francisco
paleoplate was in the foreland of the Transamazonian
orogeny. The NW limit between these Paleoproterozoic
terrains and the Archean core is defined by the NE-SW
Jeceaba Bom-Sucesso lineament (JBSL in Figure 1B), as
suggested by several studies *****,

Most Paleoproterozoic rocks are located to the south-
east of the JBSL, but there are a few exceptions. One of
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these exceptions is the Kinawa migmatite of the Itapeceri-
ca Metamorphic Complex, where 2.7 billion-year-old TTG
metagranodiorites from the Campo Belo Metamorphic
Complex were partially melted during the Paleoprotero-
zoic in the Claudio Shear Zone (CSZ in Figure 1B). U-Pb
SHRIMP zircon age of 2.05-2.03 Ga **! confirm the exist-
ence of a Paleoproterozoic episode previously document-
ed from monazite in sillimanite-cordierite-garnet-biotite
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ally, several generations of mafic dyke swarms (Figure
1B) are recognized in the southern SFC *°.
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Figure 1. Regional geological setting. (A) The Sio Francisco Craton. (B) Geological map of the Southern Sdo
Francisco Craton *, permitted reproduction—copyright Elsevier. QF—Quadrilatero Ferrifero, JBSL—]Jeceaba-

Bom Sucesso lineament, CSZ—Claudio shear zone. Cities: BH

Belo Horizonte, PM—Para de Minas, DV—

Divinépolis, RM—Rio Manso, IT—Itaguara, FO—Formiga, CL—Claudio, OL—Oliveira. (C) K-Th-U ternary gamma

spectrometric image of the Southern Sao Francisco Craton
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The region between Itaguara and Crucilandia towns
hosts a narrow NE-SW belt where the Itaguara Se-
quence (IS) is located. This sequence comprises meta-
morphosed mafic-ultramafic layered rocks (Figure 2),
including amphibolites (zircon U-Pb age of 2.16 Ga *)
and talc-actinolite metaultramafites (talc nephrites).
The metaultramafic rocks are strongly folded and de-
formed and contain coarse olivine nodules within a
fine to medium grained groundmass of talc and actino-
lite. Additionally, the IS also features metasedimentary
rocks such as iron formations, quartzites, mica-quartz
schists, and the Corrego do Peixoto granite (crystalliza-
tion U-Pb age of ~2.0 Ga "*)). The region is intersected
by high angle dextral strike-slip and northwestward
reverse faults, as well as two mafic dyke systems B7,

Chaves and Porcher’s research ' shows that Itaguara
region, where IS is located, contains retrogressed eclog-
ite (retroeclogite). This type of rock formed during the
Paleoproterozoic era, when the Archean Divinépolis

and Campo Belo/Bonfim Complexes collided to create
a suture zone. The retroeclogite in Itaguara has garnet
porphyroblasts embedded in a fine-grained matrix of
amphibole, biotite, and quartz, with scarce omphacite
and phengite. The rock’s protolith was E-MORB (Tp,,
~2.47 Ga), which underwent eclogitization around 2.20
+ 0.05 Ga (garnet and whole rock Sm-Nd isochronic
age), as evidenced by omphacite formation during high-
pressure prograde stage at a depth of around 70 km.
During the continental collision around 2.1 Ga, the rock
experienced an amphibole eclogite-facies metamorphic
peak stage of 17-20 kbar and 600-700 °C. Tectonic ex-
humation-related decompression during collision likely
led to partial melting of the eclogitic rock. Finally, dur-
ing the orogenic collapse, a late-stage decompression
estimated between 5-8 kbar and 550-650 °C under
amphibolite-facies overprint caused the appearance of
kelyphitic reaction rims (symplectite) around garnet
crystals ©.
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Figure 2. Geological map of the Itaguara Sequence (IS), with metagabbro sampling location close to the Itaguara

town (modified from Goulart and Carneiro 7

Studies conducted on the mica-quartz schist and
Corrego do Peixoto granite from IS have revealed that
they underwent metamorphic peak at around 2.05 *
0.05 Ga. The metamorphism led to amphibole eclogite-
facies at a depth of approximately 60 km, with a geo-
thermal gradient of about 10 °C/km, which is typical of
subduction zones in continental collision settings .
The high-pressure (HP) mica-quartz schist underwent
a decompression process triggered by continental col-
lision-related tectonic exhumation, leading to partial
melting and generation of the peraluminous (S-type)
syn-collisional Cérrego do Peixoto granite. The granite
solidus field was in wet conditions, and the metamor-
phism occurred at around 18.5 kbar and 626 °C. The

and Chaves et a

1.®! permitted reproduction—copyright Elsevier).

monazite age of 1.93 + 0.02 Ga found in both the mica-
quartz schist and granite is probably related to the
late-stage orogenic collapse-related decompression,
with amphibolite-facies overprint °,

The IS extends northeast towards the Rio Manso
Sequence (RMS) near the town of Rio Manso. RMS
consists of a variety of meta-ultramafic rocks such
as spinel-bearing ultramafic rocks, metabasalts and
other types. The spinel-bearing ultramafic rocks were
categorized into four petrographic types including or-
thopyroxene and olivine-bearing rocks, Ca amphibole-
bearing rocks, talc and/or serpentine-rich rocks, and
talc-bearing rocks *®. In the region, a type of olivine
can be found exhibiting a pseudo-spinifex texture that
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was formed during high-grade metamorphism along-
side talc and serpentine. According to the analysis con-
ducted by Pinheiro and Nilson ", this olivine texture is
similar to the spinifex texture found in metakomatiitic
rocks in the RMS. Additionally, there are other rocks in
the area, such as iron formations, garnet amphibolites,
and metasedimentary rocks like quartzites and sericite-
quartz schists. These rocks have been interpreted as
Archean in age *® but IS and RMS have been estimated
as Paleoproterozoic in the legend of Figure 1 due to the
geochronological results ! and differences in K-Th-U
gamma spectrometric signal between them and Rio das
Velhas Supergroup rocks (Figure 1C).

According to a study by Chaves et al. ©*), the mica-
quartz schist found in the IS region is believed to be a
component of a Paleoproterozoic accretionary wedge
formed above a paleo-subduction zone. Ophiolites,
which are typically associated with an accretionary
wedge in continental collision settings, are represented
in the IS and RMS by metamafic-ultramafic rocks. Ad-
ditionally, the NW boundary between the Archean core
and Paleoproterozoic terrains in the IS and RMS region
can now be demarcated by this ophiolitic landscape
and is limited southwestward by the Claudio shear
zone (CSZ).

3. Methods

After field work close to Itaguara town (Figure 2),
polished thin sections of distinct bands of metagabbro
and associated metaperidotite (Figure 3) from Paleo-
proterozoic IS suture zone (coordinates 20.367986
S and 44.470016 W) were prepared for petrographic
investigation and mineral microanalyses. After exam-
ining the metagabbro minerals with a petrographic
optical microscope, they were further analyzed at the
Federal University of Minas Gerais (UFMG) using a
JEOL electron microprobe (EMP). The analysis was
performed using a wavelength dispersive X-ray spec-
troscopy (WDS) under operating conditions of 15 kV
accelerating voltage and 20 nA sample current. Cali-
bration was done using oxide and silicate standards in-
cluding quartz (Si), rutile (Ti), corundum (Al), alman-
dine (Fe), periclase (Mg), rhodonite (Mn), anorthite
(Ca), jadeite (Na), and sanidine (K). The counting times
were 20 seconds on the peak and 10 seconds on the
background. Three spectrometers were used simul-
taneously and the ZAF correction procedure was ap-
plied. To prevent interaction between different crystals
during analyses, the electron beam was focused on the
minimum size of 2 micrometers. Garnet compositional
maps were generated through WDS.

(@)
AN
S

SAMPLE .4

D

Layerigg

R

e 1

Figure 3. Field exposure of metagabbro and metaperidotite. (A) Bluish metagabbro top view and highlight of
the sample 2 (brownish, under the hammer) taken from foliation surface. (B) Bluish layered metagabbro side
view and highlighted positions of the samples 1 (light-colored) and 3 (dark-colored) in the rock. (C) Dark-colored
metaperidotite with highlighted position of the sample 4. (D) Layered metaperidotite side view.
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Rock samples 1 and 2, which displayed different
mineralogical associations, were sent to the SGS-Geosol
Laboratory in Brazil for whole rock geochemical analy-
sis. The samples were milled in a tungsten mill and
then melted with lithium metaborate and dilute nitric
digestion. The laboratory conducted ICP-OES (Induc-
tively Coupled Plasma-Optical Emission Spectrometry)
analysis to determine the major elements and five trace
elements (Ba, Nb, Sr, Y, Zr). In addition, they used ICP-
MS (Inductively Coupled Plasma Mass Spectrometry)
to analyze fourteen rare earth elements and other trace
elements. The detection limit is approximately 0.01%
for the major elements and 1 ppm for the other ele-
ments. The accuracy of the analysis ranges from 1-2%
for the relative standard deviation. The laboratory also
determined the loss of ignition (LOI) through mass dif-
ference after heating the samples at 1000 °C.

The 2020 version of the Theriak-Domino software !
with ds62 database ** was utilized to produce P-T equi-
librium phase diagrams (P-T pseudosections) using bulk
rock compositions in the system Na-Ca-K-Fe-Mg-Al-Si-H-
Ti-O (NCKFMASHTO). All fluid phases were considered
as H,0. Presented throughout the text, conventional
geothermobarometers have also been used in order to
investigate P and T during the metamorphic evolution of
the metagabbro.

Ten crystals of metamorphic titanite were selected
from sample 1 to constraint the age of metamorphism
of the metagabbro, since this mineral was not found
in a few igneous preserved areas of the rock, but only
in the metamorphosed ones, which show idiomorphic
titanite. U-Pb geochronology was used on 30 to 50
micrometres polished thin section, and the data were
obtained using a Thermo Scientific Element II single
collector (SF) ICP-MS coupled to a CETAC UV Nd: YAG-
213 nm laser ablation system of the Isotopic Geochem-
istry Laboratory at Federal University of Ouro Preto—
UFOP—Brazil. The acquisition method produced over
810 mass scans during 25 seconds of background ac-
quisition and 30 seconds of sample ablation. Each anal-
ysis utilized a spot size of 40 um with a repetition rate
of 10 Hz and a laser fluence of approximately 3.5 J/cm®.
The depth penetration was 0.6 pm/s, and the integra-
tion time was 0.9 seconds. Raw counts were adjusted
offline for background signal, instrumental mass bias,
and time-dependent elemental fractionation. The data
were reduced by Glitter software “***! and an in-house
spreadsheet ***, Due to the varying initial Pb ratios
of the titanite and the technical difficulties in measur-
ing *** Pb via LA-ICP-MS ! none of the U-Pb analyses
from UFOP were corrected for Pb.. The ages have been

reported accordingly as lower intercepts on the Tera-
Wasserburg Concordia diagram, obtained from Isoplot
package *°. All uncertainties on dates/ages are re-
ported as 2s. Four titanite reference material known as
Bear Lake, BLR-1, Khan River and Mount Painter have
been dated to check measurements, and produced their
expected ages of 1064 Ma, 1054 Ma, 542 Ma and 444
Ma respectively 7],

4. Results

4.1 Field Exposure, Petrography, Mineral Chem-
istry and Metamorphic Assemblages

In field exposure (Figure 3), there are only scattered
blocks of bluish metagabbro and dark-colored metape-
ridotite alongside the road and it was not possible to
find geological contact between them. Results of petro-
graphic investigation and mineral microanalyses in dif-
ferent bands of layered metagabbro (samples 1, 2 and
3) and associated metaperidotite (sample 4), shown
in Figure 3, are presented below with suggestions of
the respective probable prograde, peak and retrograde
metamorphic phase assemblages. This paper employs
the mineral name abbreviations provided by Whitney
and Evans %,

Sample 1

Remains of igneous texture containing labrador-
itic plagioclase (Ans,_s5) and augitic clinopyroxene
(Wo,4En;,Fs;) have been found in sample 1 of the
metagabbro (Figure 4A) and representative analyses
of these minerals are presented in Table 1. Figure 4B
shows plagioclase (PI), clinopyroxene (Cpx) and mag-
netite (Mag) scattered in a granoblastic texture. The
metamorphism advanced and new minerals like garnet
(Grt), clinozoisite (Czo), titanite (Ttn) and quartz (Qz)
appeared (Figure 4C, 4D and Table 2), which represent
the prograde metamorphic phase assemblage.

Lawsonite (Lws—preserved inside garnet that was
altered to chlorite is highlighted in grey circle of Figure
4D) is probably the mineral formed during a metamor-
phic peak. During retrograde metamorphism, phengite
(Ph) was formed, garnet (Grt) was replaced by chlorite
(Chl—Figure 4D) and Cpx was replaced by magnesium-
hornblende (Hbl) as shown in Figure 4E and Table 2.
Subhedral to euhedral prehnite (Prh) crystals are also
found in sample 1 of the metagabbro (Figure 4F and
Table 2) and they seem to represent the final evolution
of the rock. Thus, Ph, Chl, Hbl and, finally, Prh should
be the retrograde metamorphic mineral assemblage.
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Figure 4. Photomicrographs of sample 1 under crossed polarizers. (A) Preserved igneous gabbroic texture. (B)
Metagabbro with recrystallized plagioclase (PI) and clinopyroxene (Cpx). (C) Magnetite (Mag), phengite (Ph) and
clinozoisite (Czo). (D) Clinopyroxene (Cpx), garnet-Grt (in substitution to chlorite-Chl), quartz (Qz), clinozoisite
(Czo), titanite (Ttn) and lawsonite (Lws—preserved inside garnet). (E) Hornblende (Hbl), clinozoisite (Czo), and

more phengite (Ph). (F) Prehnite (Prh) and titanite (Ttn).

Table 1. Representative analyses of plagioclase (P1) and clinopyroxene (Cpx) from a preserved igneous portion of

the metagabbro (sample 1).

Pl-1 Pl-2 PI-3 Pl-4 Cpx-1 Cpx-2
Sio, 55.24 54.92 55.32 54.75 Si0, 54.03 53.17
TiO, 0.03 0.05 0.00 0.07 TiO, 0.04 0.00
Al 0, 27.53 27.87 27.72 27.75 Al,0, 0.76 0.72
FeO 0.09 0.17 0.13 0.14 FeO 10.77 10.90
MnO 0.01 0.00 0.02 0.00 MnO 0.54 0.50
MgO 0.08 0.10 0.04 0.06 MgO 11.40 11.76
Ca0 11.00 11.52 11.10 11.25 Ca0 22.78 23.05
Na,0 5.47 5.32 5.74 5.80 Na,0 0.31 0.31
K,0 0.11 0.07 0.14 0.06 K,0 0.12 0.10
Total 99.56 100.01 100.19 99.89 Total 100.75 100.50
32 0x 6 0x
Si 10.02 9.94 9.99 9.93 Si 2.02 2.00
Ti 0.00 0.01 0.00 0.01 Al 0.05 0.03
Al 5.88 5.94 5.90 5.93 Fe 0.34 0.34
Fe 0.01 0.03 0.02 0.02 Mn 0.02 0.02
Ca 2.14 2.23 2.15 2.18 Mg 0.63 0.66
Na 1.92 1.86 2.01 2.04 Ca 0.91 0.93
K 0.02 0.02 0.03 0.01 Na 0.02 0.02
Total 20.01 20.03 20.09 20.13 K 0.01 0.00

Total 3.98 4.00

An 52.32 54.27 51.27 51.55 Wo 47.93 47.72
Ab 47.08 45.33 47.98 48.13 En 33.39 33.87
Or 0.61 0.40 0.75 0.32 Fs 18.68 18.42
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Table 2. Representative analyses of clinozoisite (Czo), phengite (Ph), lawsonite (Lws), chlorite (Chl), titanite (Ttn),
hornblende (Hbl) and prehnite (Prh) from metamorphosed portion of the metagabbro (sample 1).

Czo-1 Czo-2 Ph-1 Ph-2 Ph-3 Ph-4 Ph-5 Ph-6 Ph-7
Sio, 39.68 39.62 Sio, 49.68 49.26 49.48 49.89 49.43 49.52 49.59
TiO, 0.05 0.00 TiO, 0.02 0.06 0.00 0.00 0.13 0.01 0.00
AlO, 29.27 29.10 Al,0, 32.81 32.37 33.47 32.40 32.64 32.82 32.75
Fe,0, 4.29 4.61 FeO 1.96 1.60 1.81 1.84 1.58 1.68 1.54
MnO 0.16 0.00 MnO 0.00 0.04 0.00 0.04 0.02 0.00 0.03
MgO 0.13 0.24 MgO 2.86 2.56 2.26 2.47 2.53 2.66 2.45
Ca0 23.88 2391 Ca0 0.17 0.24 0.15 0.17 0.17 0.20 0.17
Na,0 0.17 0.16 Na,0 0.18 0.30 0.13 0.22 0.16 0.21 0.14
K,0 0.08 0.04 K,0 10.03 10.31 10.16 10.90 10.82 10.66 10.03
Total 97.72 97.67 Total 97.71 96.73 97.46 97.93 97.47 97.75 96.71
25 ox 11 ox
Si 6.24 6.25 Si 3.21 3.22 3.21 3.24 3.22 3.21 3.23
Ti 0.01 0.00 Al(1V) 0.79 0.78 0.79 0.76 0.78 0.79 0.77
Al 5.43 5.41 AlI(VI) 1.71 1.72 1.76 1.71 1.72 1.72 1.75
Fe(iii) 0.25 0.27 Fe(ii) 0.11 0.09 0.10 0.10 0.09 0.09 0.08
Mn 0.02 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mg 0.03 0.06 Mg 0.28 0.25 0.22 0.24 0.25 0.26 0.24
Ca 4.02 4.04 Ca 0.01 0.02 0.01 0.01 0.01 0.01 0.01
Na 0.05 0.05 Na 0.02 0.04 0.02 0.03 0.02 0.03 0.02
K 0.02 0.01 K 0.83 0.86 0.84 0.90 0.90 0.88 0.83
Total 16.07 16.08 Total 6.96 6.98 6.94 6.99 6.99 6.99 6.94

Table 2 (continued)

Lws-1 Lws-2 Chl-1  Chl-2 Ttn-1 Hbl-1  Hbl-2 Prh-1 Prh-2
Sio, 38.99 38.68 Sio, 28.16  28.60 Sio, 31.62 SiO, 46.16  46.52 Sio, 44.80 44.23
Tio, 0.00 0.03 Tio, 0.30 0.39 Tio, 3782 TiO, 0.56 0.71 Tio, 0.04 0.00
Al,0, 3252 3271 Al,0, 18.56 1848  ALO; 1.36 Al0, 8.35 9.07 Al 0, 24.06 24.44
FeO 0.86  0.28 FeO 27.66  27.22 FeO 0.51 FeO 13.16 13.28 FeO 0.21 0.16
MnO 0.02 0.03 MnO 0.24 0.28 MnO 0.16 MnO 0.41 0.30 MnO 0.12 0.18
MgO 0.21 0.10 MgO 12.64 12.76 MgO 0.04 MgO 13.58 13.30 MgO 0.11  0.10
Ca0 17.28 17.94 Ca0 0.12 0.19 Ca0 28.48 CaO 11.71 11.47  CaO 26.56 26.76
Na,0 0.77 090 Na,0 0.02 0.02 Na,0 0.06 Na,0 1.05 1.10 Na,0 0.10 0.15
K,0 0.16  0.08 K,0 0.65 0.71 K,0 0.03 K,0 0.20 0.25 K,0 0.03 0.02
Total 90.79 90.75 Total 88.35 88.65 Total 100.08 Total 95.18 96.00  Total 96.02 96.05

23 ox
Si 6.88 6.89
28 ox Al(IV) 1.12 1.11

8 ox Si 5.96 6.01 5 ox Al(VD) 0.35 0.48 11 ox
Si 2.00 1.99 Al(1V) 2.04 1.99 Si 1.03 Fe(iii) 0.30 0.11 Si 3.06 3.02
Ti 0.00  0.00 Al(VI) 2.59 2.59 Ti 0.93 Ti 0.06 0.08 Ti 0.00 0.00
Al 1.97 1.98 Ti 0.05 0.06 Al 0.05 Fe(ii) 1.34 1.54 Al 194 197
Fe 0.04 0.01 Fe(ii) 4.89 4.79 Fe 0.01 Mn 0.05 0.04 Fe 0.01 0.01
Mn 0.00  0.00 Mn 0.04 0.05 Mn 0.00 Mg 3.02 2.94 Mn 0.01 0.01
Mg 0.02 0.01 Mg 3.99 4.00 Mg 0.00 Ca 1.87 1.82 Mg 0.01 0.01
Ca 0.95 0.99 Ca 0.03 0.04 Ca 0.99 Na 0.30 0.32 Ca 194 196
Na 0.08  0.09 Na 0.01 0.01 Na 0.00 K 0.04 0.05 Na 0.01 0.02
K 0.01 0.00 K 0.18 0.19 K 0.00 Total 15.34 1536 K 0.00 0.00
Total 5.06 5.07 Total 19.77 19.73 Total 3.02 Name Mg-Hbl Mg-Hbl Total 698 7.00

Source: Amphibole name according to Leake et al. *”),
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Sample 2

Visible in hand sample and with pleochroism in
shades of blue, elongated barroisite (Brs) crystals oc-
cur partially replaced by brownish tschermakite (Ts)
amphibole (Figure 5A and Table 3). Biotite (Bt) and
phengite (Ph) also occur associated with these minerals
(Figure 5A). With irregular edges, few almandine gar-
net porphyroblasts appear, being replaced by chlorite

(Figure 5B and 5C), which is the most abundant min-
eral of sample 2, responsible by lepidoblastic texture.
Table 4 shows the chemical composition of 12 spots
from one edge to the other in garnet. Core-rim chemical
zoning can be seen in Figure 6, where EMP Fe (richer in
rim) and Mg (richer in core) concentration maps (Figure
6A and 6B) are presented with a quantitative graphical
profile from spot X to spot X’ (Figure 6C).
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Figure 5. Photomicrographs of sample 2 under uncrossed polarizers. (A) Bluish barroisite (Brs) is being replaced
by tschermakite (Ts) and biotite (Bt). Some phengite (Ph) also appears. (B) Garnet (Grt) replacement by chlorite
(Chl). Opg—opaque mineral, Rt—Rutile. (C) Photomicrography of sample 2 under crossed polarizers, showing
tschermakite (Ts), clinozoisite (Czo), albite (Ab), garnet (Grt) and chlorite (Chl).
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Figure 6. EMP-WDS garnet compositional maps. (A) Fe, (B) Mg, (C) Quantitative graphical profile from spot X to
spot X’ (data from Table 4). Prp = pyrope. Alm = almandine, Grs = grossular. Sps = spessartine.

Table 3. Representative analyses of tschermakite (Ts), barroisite (Brs), plagioclase (Pl), clinozoisite (Czo) and
chlorite (Chl) from sample 2.

Ts-1  Ts-2 Ts-3 Ts-4 Brs-1 Brs-2 PI-5 Czo-3 Chl-3
Sio, 4331 43.04 43.57 43.08 Sio, 49.69 49.72 Sio, 71.03 Sio, 39.86 Sio, 29.01
TiO, 071 0.39 0.83 0.53 TiO, 0.72 0.74 TiO, 0.00 TiO, 0.04 TiO, 0.02
Al0,4 16.04 16.06 16.20 15.78  Al0,4 13.10 13.08  AlL0, 18.80  Al0, 29.82 AL, 22.05
FeO 11.75 12.14 11.25 11.36 FeO 11.36 11.37 FeO 0.44 Fe,0, 4.06 FeO 17.18
MnO 0.22 030 0.27 0.39 MnO 0.27 0.26 MnO 0.03 MnO 0.10 MnO 0.34
MgO 1296 12.71 12.57 12.89 Mg0 10.68 10.84 MgO 0.12 MgO0 0.05 MgO 19.92
Ca0 10.83 11.10 10.56 11.31 Ca0 9.59 9.63 Ca0 0.70 Ca0 23.35 Ca0 0.13
Na,0 243 250 2.38 2.42 Na,0 1.96 1.90 Na,0 8.77 Na,0 0.09 Na,0 0.04
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Table 3 continued

Ts-1  Ts-2 Ts-3 Ts-4 Brs-1 Brs-2 PI-5 Czo-3 Chl-3
K,0 0.22 0.19 0.31 0.19 K,0 0.29 0.32 K,0 0.19 K,0 0.05 K,0 0.05
Total 98.46 98.44 97.95 97.94 Total 97.65 97.86 Total 100.08 Total 97.40 Total 88.75
23 ox 23 ox
Si 6.25 6.23 6.29 6.25 Si 7.07 7.06 32 ox
Al(IV) 1.75 1.77 1.71 1.75 Al(Iv) 093 0.94 Si 12.28 28 ox
Al(VD) 0.97 0.97 1.05 0.95 Al(VD) 127 1.25 Ti 0.00 25 ox Si 5.74
Fe(iii) 0.00 0.00 0.00 0.00 Fe(iii)  0.00 0.03 Al 3.83 Si 6.26 Al(lvV)  2.26
Ti 0.08 0.04 0.09 0.06 Ti 0.08 0.08 Fe(ii) 0.06 Ti 0.00 Al(V) 2.88
Fe(ii) 1.42 1.47 1.36 1.38 Fe(ii) 1.35 1.32 Ca 0.13 Al 5.52 Ti 0.00
Mn 0.03 0.04 0.03 0.05 Mn 0.03 0.03 Na 2.94 Fe(iii)  0.24 Fe(ii) 2.84
Mg 2.79 2.74 2.71 2.79 Mg 2.27 2.29 K 0.04 Mn 0.01 Mn 0.06
Ca 1.67 1.72 1.63 1.76 Ca 1.46 1.47 Total 19.29 Mg 0.01 Mg 5.87
Na 0.68 0.70 0.67 0.68 Na 0.54 0.52 Ca 3.93 Ca 0.03
K 0.04  0.04 0.06 0.04 K 0.05 0.06 An 4.18 Na 0.03 Na 0.02
Total 15.67 15.72 15.60 15.70 Total 15.05 15.04 Ab 94.51 K 0.01 K 0.01
Name Ts Ts Ts Ts Name Brs Brs Or 1.32 Total 16.00 Total 19.71

Source: Amphibole names according to Leake et al. *.

Table 4. Chemical analyses of 12 spots from one edge to the other in garnet crystal from sample 2, as shown in
Figure 6.

Grtl Grt2 Grt3 Grt4 Grt5 Grté6 Grt7 Grt8 Grt9 Grt10 Grt11 Grt12

rim rim rim core core core core core core rim rim rim
Sio, 38.37  38.50 38.41 38.80 39.42 39.02 39.43 40.63 38.80 38.93 38.80 38.52
TiO, 0.03 0.09 0.04 0.15 0.12 0.03 0.04 0.05 0.07 0.01 0.01 0.01
AlLO, 21.51 2226 21.45 22.72 22.43 22.49 22.23 21.31 22.25 22.29 22.40 22.56
FeO 27.72  27.68 26.68 24.27 23.99 23.64 23.50 23.78 24.98 26.72 26.79 26.30
MnO 1.75 1.64 1.71 1.23 1.22 1.25 1.29 1.28 1.32 1.52 1.57 1.61
MgO 6.17 6.58 7.17 8.39 8.13 9.03 9.54 9.27 8.27 7.10 6.85 6.72
Ca0 3.46 3.47 3.60 3.62 3.67 3.78 3.79 3.63 3.60 3.71 3.55 3.34
Na,0 0.13 0.06 0.11 0.06 0.14 0.10 0.06 0.00 0.13 0.09 0.09 0.10
K,0 0.03 0.04 0.03 0.03 0.02 0.08 0.02 0.03 0.06 0.02 0.07 0.08
Total 99.18 100.32  99.19 99.26 99.14 99.41 99.89 99.99 99.48 100.40 100.12  99.24
24 ox
Si 6.04 5.98 6.02 5.98 6.07 6.00 6.02 6.18 6.00 6.01 6.01 6.01
Ti 0.00 0.01 0.00 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00
Al 3.99 4.07 3.96 4.13 4.07 4.07 4.00 3.82 4.05 4.05 4.09 4.15
Fe 3.65 3.59 3.50 3.13 3.09 3.04 3.00 3.03 3.23 3.45 3.47 3.43
Mn 0.23 0.22 0.23 0.16 0.16 0.16 0.17 0.17 0.17 0.20 0.21 0.21
Mg 1.45 1.52 1.67 1.93 1.87 2.07 2.17 2.10 191 1.63 1.58 1.56
Ca 0.58 0.58 0.61 0.60 0.61 0.62 0.62 0.59 0.60 0.61 0.59 0.56
Total 1596 1597 15.99 15.94 15.88 15.96 15.98 15.90 15.97 15.96 15.95 15.92
Prp 24.48  25.77 27.89 33.14 32.62 35.11 36.45 35.72 32.27 27.71 27.06 27.11
Alm 61.72  60.81 58.24 53.81 54.01 51.57 50.36 51.43 54.69 58.51 59.35 59.54
Grs 9.86 9.77 10.08 10.27 10.58 10.57 10.39 10.05 10.10 10.41 10.08 9.67
Sps 3.94 3.66 3.79 2.77 2.79 2.75 2.79 2.81 2.94 3.37 3.52 3.68
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In sample 2 from metagabbro are still found acces-
sory rutile (Rt—analyzed with TiO, = 99.13 and FeO =
0.43 by WDS-EMP), opaque minerals (Opq), albite
(Ab,g) and clinozoisite (Figure 5B, 5C and Table 3). Brs,
Almandine Grt, Rt and Czo are prograde metamorphic
minerals and Ph would be probably of the metamor-
phic peak. Ts, Bt, Chl, and Ab seem to be retrograde
minerals. Qz is almost nonexistent.

Sample 3

With granonematoblastic texture, sample 3 has min-
eralogy composed of magnesium hornblende (Hbl),
clinozoisite (Czo) and andesine plagioclase (Abs, ¢;),
with respective analyses presented in Table 5. Some
portions of the rock are constituted by Hbl and Czo,
and metagabbro was renamed to epidote hornblend-
ite (Figure 7A). Other ones are constituted by Hbl and
plagioclase (P1), with sporadic Czo (Figure 7B). This
assemblage suggests that sample 3 passed through
epidote amphibolite metamorphic facies.

Figure 7. Photomicrographs of sample 3 under uncrossed
polarizers. (A) Clinozoisite (Czo) and hornblende (Hbl).
(B) Plagioclase (P1) and hornblende (Hbl).

Table 5. Representative analyses of plagioclase (P1), clinozoisite and hornblende from sample 3.

Pl-6 P1-7 PI1-8 Czo-4 Hbl-3 Hbl-4
Sio, 57.65 58.26 58.71 Sio, 38.39 Sio, 46.97 47.09
TiO, 0.36 0.00 0.05 Tio, 0.06 TiO, 0.86 0.80
AlL0, 26.05 26.72 25.59 Al 0, 29.74 AlLO, 13.51 13.37
FeO 0.20 0.14 1.83 Fe,0, 2.89 FeO 12.10 12.27
MnO 0.07 0.00 0.01 MnO 0.26 MnO 0.31 0.28
MgO0 0.06 0.13 0.51 MgO 0.10 MgO0 11.00 11.01
Ca0 8.75 7.57 6.02 Ca0 25.26 Ca0 11.04 11.08
Na,0 6.20 5.64 6.57 Na,0 0.27 Na,0 2.21 2.18
K,0 0.18 0.83 0.73 K,0 0.26 K,0 0.24 0.18
Total 99.51 99.28 100.02 Total 97.21 Total 98.24 98.24
32 ox 23 ox
Si 10.39 10.48 10.58 Si 6.75 6.77
Ti 0.05 0.00 0.01 Al(1V) 1.25 1.23
Al 5.53 5.66 5.44 25 ox AI(VI) 1.04 1.03
Fe(ii) 0.03 0.02 0.28 Si 6.06 Fe(iii) 0.00 0.00
Ca 1.69 1.46 1.16 Ti 0.01 Ti 0.09 0.09
Na 2.17 1.97 2.30 Al 5.53 Fe(ii) 1.45 1.47
K 0.04 0.19 0.17 Fe(iii) 0.17 Mn 0.04 0.03
Total 19.90 19.77 19.92 Mn 0.03 Mg 2.36 2.36
Mg 0.02 Ca 1.70 1.71
Ca 4.27 Na 0.61 0.61
An 43.35 40.37 32.06 Na 0.08 K 0.04 0.03
Ab 55.62 54.38 63.34 K 0.05 Total 15.34 15.33
Or 1.03 5.26 4.61 Total 16.23 Name Mg-Hbl Mg-Hbl

Source: Amphibole name according to Leake et al. **),
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Sample 4

Metaperidotite has spinel wehrlite as protolith and
shows its original mineralogy of olivine (Ol), clinopyrox-
ene (Cpx) and spinel (Spl) is replaced by serpentine (Srp),

chlorite (Chl), talc (Tlc) and tremolite (Tr), as shown
in Figure 84, 8B, 8C and 8D. According to Winter | in
metaperidotites the mineral association Ol-Cpx-Srp-
Tlc-Tr is stable around 500 °C and between 6 and 12

kbar.

Figure 8. Photomicrographs of sample 4 under crossed polarizers. Olivine (0l), clinopyroxene (Cpx), spinel (Spl),
serpentine (Srp), chlorite (Chl), talc (Tlc) and tremolite (Tr) represent the rock mineralogy. (A), (B), (C) and (D)

are different parts of the same thin section.

4.2 Thermobarometry

P-T pseudosections have been obtained for samples
1 (High Si and Ca) and 2 (Low Si and Ca) of the met-
agabbro and are respectively shown in Figures 9 and
10. Usually described in low T/P subduction-related
rocks, sodic-calcic amphiboles (like Brs—found in
sample 2, Figure 5A) appeared in both pseudosections.
Typical of blueschist-facies metamorphism, lawsonite
(Lws) found in sample 1 (Figure 4D) appeared only in
pseudosection of sample 1 (Figure 9) above 14 kbar
(low Ca does not favor the appearance of Lws in sample
2). Rutile (Rt) found in sample 2 (Figure 5B) appeared
in pseudosection of sample 2 (Figure 10) above 8 kbar.
Based on these observations from petrography and
pseudosections, it is reasonable to suggest that met-
agabbro attained high-pressure conditions (> 10 kbar).

The prograde P-T path herein proposed in both pseu-
dosections followed toward metamorphic peak condi-
tions determined by the occurrence of Lws in Figure 9
and by the presence of Ph in Figure 10, inside blueschist
metamorphic facies. Therefore, it is herein suggested that
the prograde path had a trajectory around 25 °C/kbar
(~250 °C/GPa) in both pseudosections, which in turn
pointed together to metamorphic peak around 16 kbar
and 450 °C, corresponding to ~50 km depth subduction
(Figures 9 and 10).

Chlorite (Chl) is the most abundant mineral in sam-
ple 2 (Figure 5B and 5C) and appeared in all stability
fields of equilibrium assemblages in pseudosection of
Figure 10. However, in sample 1 pseudosection (Fiure
9), the first appearance of Chl, described in petrogra-
phy as replacing garnet (Figure 4D), was around 16
kbar and 500 °C, condition that drives the retrograde
section of the P-T path to this region of P and T, from
blueschist-facies to epidote amphibolite-facies. Albite
(ADb) has been described in petrography as a retro-
grade mineral in sample 2 (Figure 5C) and its first ap-
pearance in Figure 10 took place around 4 kbar during
final retrograde section of the proposed P-T path.

Taken together, tschermakite replacing barroisite
crystals (sample 2—Figure 5A) and garnet rim (sample
2—Figure 6) seem to indicate metagabbro exhumation
(drop in P and T) occurred after metamorphic peak. Re-
garding conventional thermometry, the pressure-inde-
pendent Grt-Hbl Fe-Mg geothermometer ! has been
tentatively used to estimate T during metagabbro ex-
humation (retrograde metamorphism). Average tsch-
ermakite compositions (Table 3) and average composi-
tions of the garnet rim (Table 4) yielded 521 + 26 °C.
This temperature is consistent with epidote amphibo-
lite-facies and agrees with an intermediate section of
the retrograde path in pseudosection of Figure 10.
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Bulk(1)=Si(47.69)AI(14.67)Ti(0.34)Fc(5.67)Mg(6.93)Ca(15.39)No(2.73)K(0.01)H(6.26)0(150.83)
| . | | | .

FORBBIDEN

Pressure [Bar]
Depth [km]

Temperature [°C]

1-Grt Czo Bt (2JAmp Ttn Qz 16 - Grt Czo Ph Amp (2)Cpx Zo Rt Qz H0
2-Grt Czo Bt (2)Amp Cpx Ttn Qz 17 - Grt Czo Ph Amp Cpx Zo Rt Qz H0
3-Grt Czo Ph (2)Amp Ttn Qz 18 - Czo (2)Amp Cpx Ttn Ab Qz

4 -Grt Czo Ph (2)Amp Lws Ttn Qz 19 - Czo Amp Cpx Ttn Ab Qz

5-Grt Czo Ph (2JAmp Cpx Ttn Qz 20 - Czo Amp Cpx Ttn Qz

6 - Grt Czo Ph (2)Amp Cpx Lws Ttn Qz 21-Grt Czo Amp Cpx Ttin Qz

7-Grt Czo Ph Amp (2)Cpx Lws Ttn Qz 22 - Czo Amp Cpx Zo Ttn Qz

8- Grt Czo Ph (2JAmp Cpx Chl Lws Ttn Qz| 23 - Grt Czo Amp Cpx Zo Ttn Qz

9 - Czo Bt (2)Amp Cpx Chl Ttn Qz 24 - Grt Czo Amp Cpx Zo Ttn Qz H0
10 - Grt Czo Bt (2)Amp (2)Cpx Ttn Qz 25 - Pl Czo Amp Cpx Ttn Qz H0

11- Gt Czo Ph (2)Amp (2)Cpx Ttn Qz 26 - Czo Amp Cpx Ttn Ab Qz Hp0

12 - Czo Bt (2)Amp Cpx Chl Ttn Ab Qz 27 - P1 Czo Amp Cpx Zo Ttn Qz H0

13 - Gt Czo Bt Amp (2)Cpx Ttn Qz 28 - Czo Amp Cpx Zo Ttn Ab Qz Hy0

14 - Grt Czo Ph Amp (2)Cpx Ttn Qz
15 - Grt Czo Ph Amp (2)Cpx Zo Tin Qz H0

29. Cz0 Amp Cpx Zo Ttn Qz H0

Figure 9. P-T pseudosection of sample 1 showing
stability fields of several equilibrium mineral assemblages
and the probable metamorphic evolution (path in blue)
of the metagabbro from Itaguara Sequence. Mineral
abbreviations are as in text and metamorphic facies are
separated by red lines. Forbidden metamorphic zone and
approximate depths are after Palin et al. *”.

Phengite from sample 1 is low-Si (Table 2) and
therefore understood herein as a retrograde metamor-
phic mineral. For phengite with Si < 3.25 apfu, Kam-
zolkin et al. ** have proposed the following equation
to calculate P:

P(GPa) = [0.023T(°C) + 5.99Si + 1.76Al + 12.89(Mg +
Fe) - 31.91]/10

By using average apfu data from phengite analyses
(Si < 3.25 apfu; Table 2) and by considering T = 521 °C
previously obtained, the pressure found for metagab-
bro using this equation is 0.81 + 0.34 GPa (8.1 + 3.4
kbar). This pressure occurs in epidote amphibolite-
facies and also seems to represent metagabbro ex-
humation, in agreement with intermediate section of
the retrograde path in pseudosection of Figure 9. In
this figure, the retrograde path ends around 300 °C
in which prehnite (Prh) found in rock (Figure 4F) is

26

Bulk(1)=Si(31.28)AI(14.96)Ti(0.33)Fe(10.17)Mg(14.21)Ca(5.5)Na(2.29)K(0.19)H(20.76)0(127.43)
| l | | .

. L .

Pressure [Bar]
Depth [km]

| |
200 300 400

T .
500 600

Temperature [°C]
1- Bt (3)Amp Chl Mag Ab Qz Ilm 11 - Bt (2)Amp Chl Ab Qz Ilm
2 - Bt (3)Amp Chl Mag Qz Ilm 12 - Bt (2)Amp Chl Qz Iim
3 - Grt Czo Bt (3)Amp Chl Mag Ilm 13 - Grt Bt (2)Amp Chl Qz Ilm
4 - Grt Czo Bt (2)Amp Chl Mag Ilm 14 - Grt Czo Bt (2)Amp Chl Rt
5 - Grt Czo Bt (2Amp Chl Mag Rt 15 - Grt Czo Bt (2)Amp Chl Qz Rt
6 - Grt Czo Ph Bt (2)Amp Chl Mag Rt | 16 - Grt Bt Amp Chl Qz Rt
7 - Grt Ph Bt (2)Amp Chl Mag Rt 17 - Grt Ph Bt Amp Chi Qz Rt
8 - Grt Czo Bt (2)Amp Chl Rt 18 - Grt Ph Amp Chl Qz Rt H30
9 - Grt Czo Ph Bt (2)Amp Chl Rt 19 - PI Bt (2)Amp Chl Qz Ilm
10 - Grt Ph Bt (2)Amp Chl Rt 20 - P1 Bt (2)Amp Chl Qz Ilm H30

Figure 10. P-T pseudosection of sample 2 showing
stability fields of several equilibrium mineral assemblages
and the probable metamorphic evolution (path in blue)
of the metagabbro from Itaguara Sequence. Mineral
abbreviations are as in text. Forbidden metamorphic zone
and approximate depths are after Palin et al. *?.

stable. The mineral assemblage constituted by magne-
sium hornblende (Hbl), clinozoisite (Czo) and andes-
ine plagioclase (Abs, ;) from sample 3 is additional
evidence for metagabbro path through epidote amphi-
bolite-facies. The mineral assemblage Ol-Cpx-Srp-Tr
found in metaperidotite (sample 4—Figure 8) is stable
around 500 °C and between 6 and 12 kbar " which
are the respective T and P of the retrograde path.

4.3 Geochemistry

Geochemical data of samples 1 (high silica and Ca
and low Mg and Fe) and 2 (low silica and Ca and high
Mg and Fe) are presented in Table 6. When plotted in
Si0, versus Nb/Y diagram (Figure 11A) of Xia and Li **,
both metagabbro samples are classified as sub-alkaline
basalt.
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Table 6. Chemical composition of samples 1 and 2. Major elements oxides in % and trace elements in ppm. LOI—

Lost On Ignition.

Sample 1 Sample 2

Sio, 52.82 41.01
TiO, 0.50 0.58
Al 0, 13.79 16.64
Cr,0,4 0.10 0.14
FeOt 7.51 15.94
MnO 0.30 0.35
MgO 5.15 12.50
Ca0 1591 6.73
Na,0 1.56 1.55
K,0 0.01 0.20
P,0s 0.10 0.08
LOI 1.04 4.08
Total 98.79 99.80
Co 41.60 91.80
Ni 212.00 352.00
Cs 0.71 1.70
Rb 2.90 12.20
Ba 47.00 105.00
Sr 144.00 47.00
Nb 3.53 3.90
Ta 1.46 1.00
Y 12.93 30.49
Zr 43.00 68.00
Hf 1.21 1.52
\Y% 124.00 268.00
Cu 40.00 42.00
Ga 10.00 19.00
Th 2.80 1.60
U 0.72 0.44
La 6.20 8.60
Ce 11.70 13.10
Pr 1.26 2.05
Nd 6.80 9.50
Sm 1.80 2.50
Eu 0.53 0.60
Gd 2.07 3.10
Tb 0.31 0.45
Dy 2.34 3.41
Ho 0.43 0.71
Tm 0.23 0.28
Er 1.70 2.36
Yb 1.70 2.00
Lu 0.24 0.29
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In AFM ternary diagram (Figure 11B) after Irvine
and Baragar ** and in Zr-Ti/100-Yx3 ternary diagram
(Figure 11C) of Pearce and Cann %, the metagabbro
protolith is classified as MORB-like tholeiitic basalt.
Both chondrite-normalized rare earth element varia-
tion plot (Figure 11D) and primitive mantle-normalized
trace element variation plot (Figure 11E) (normaliza-
tion and reference curves after Sun and McDonough ")
reveal that metagabbro has an E-MORB pattern. Nega-
tive anomalies of Nb and Ti can be related to fluid
release from protolith during dehydration under sub-
duction process ®**°!, E-MORB signature of the met-

ANDESITE

agabbro protolith is reinforced in TiO,/Yb versus Nb/
Yb diagram *” and Y/Nb versus Zr/Nb diagram %,
respectively shown in Figures 11F and 11G.

4.4 U-Pb Geochronology

Figure 12A shows the laser spots on the metamor-
phic titanite crystals of the metagabbro from sample
1. The acquired U-Pb data of 56 spots are presented in
Table 7. The lower intercept on the Tera-Wasserburg
Concordia diagram (Figure 12B) yielded an age of
2135 + 15 Ma for the metamorphic titanite crystals.
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Figure 11. Geochemical diagrams. (A) SiO, versus Nb/Y classification diagram ®*. (B) AFM ternary diagram
after Irvine and Baragar °.. (C) Zr-Ti/100-Yx3 ternary diagram "%, (D) Chondrite-normalized rare earth element
variation plot (normalization and reference curves after Sun and McDonough ", (E) Trace element variation plot
normalized to primitive mantle (normalization and reference curves after Sun and McDonough *™). (F) Ti0,/
Yb versus Nb/Yb diagram '’ (G) Y/Nb versus Zr/Nb diagram **, where T-MORB is transitional MORB. Blue

square—sample 1, red square—sample 2.
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Figure 12. Titanite U-Pb geochronology. (A) Photomicrographs under reflected light of the laser spots on titanite
crystals. (B) **’Pb/**°Pb versus **’U/**°Pb Tera-Wasserburg Concordia diagram of the titanite crystals from
metagabbro of sample 1.
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5. Discussion and Conclusions

Preserved igneous texture in sample 1 has confirmed
gabbro as the protolith of the investigated layered me-
tabasic rock. Throughout the stability fields of the sodic-
calcic amphibole (barroisite) crystals present in the met-
agabbro (Figures 9 and 10), the prograde path followed a
~25 °C/kbar subduction trajectory within the blueschist-
facies field.

The reason why lawsonite is relatively scarce in the
rock record worldwide can be explained by two factors.
Firstly, it may be due to dehydration during subduction,
which occurs before reaching the lawsonite stability field.
As a result, the rock became H,0 undersaturated, which
prevented the formation of lawsonite "', Alternatively,
it could also be due to extensive retrogression during
exhumation ©%. During this process, lawsonite often
transforms into minerals like epidote. "****", Remark-
ably, sample 1 preserves lawsonite because its formation
occurred inside garnet, which has acted as a shieldinOg
mineral that was slowly replaced by chlorite. Lawsonite
is a remnant of metamorphic peak that probably oc-
curred around 16 kbar and 450 °C in blueschist-facies
as suggested by P-T path in Figure 9, and also sample 2
preserves rutile (stable Ti phase at higher P-T conditions;
Figure 10) and phengite.

The estimated P-T-t paths for blueschists and eclog-
ites containing lawsonite propose that temperature rise
might occur before uplift, leading to the transformation
of blueschist-facies assemblages into amphibolite-facies
assemblages through recrystallization '°”. Hornblende,
clinozoisite and andesine found in sample 3 register post-
peak metamorphic conditions in epidote amphibolite-
facies, during collision-related tectonic exhumation. This
exhumation in turn also promoted the retrograde meta-
morphism of the metagabbro to prehnite/pumpellyite-
facies conditions as indicated by prehnite found in sample
1 (Figure 9).

According to Maruyama et al. ™, orogenic perido-
tites are believed to be the uppermost mantle that
constitutes the foundation of fragments of oceanic
lithosphere added to the continental crust along sub-
duction zones. These fragments are disintegrated parts
of ophiolites—sections of oceanic crust and mantle
that either separate from the descending slab and
become part of the subduction zone’s accretionary
wedge, or get trapped between two terranes during an
accretion event. In orogens, pieces of ultramafic bodies
are situated along major fault zones that separate di-
verse terranes. These pieces are remnants of that once
separated collisional terranes, and therefore mark the

suture zone, which is the representation of the ancient
subduction zone that happened before the collision ™.
The co-occurrence of blueschist-facies rocks with
ultramafics, mafics, and sediments supports the hy-
pothesis of a subduction-related origin *. Ophiolites
can represent either a marginal sea behind an offshore
island arc (like present-day Japan) in cases where the
arc gets pushed back toward the continent behind it or
typical oceanic crust between colliding continents. Spi-
nel peridotites are smaller fragments of the presumed
ophiolitic ultramafics ™.

Sample 4 was revealed to be spinel metawehrlite
and the metamorphic assemblage with olivine, clino-
pyroxene, serpentine, chlorite, talc and tremolite is
stable around 500 °C and between 6 and 12 kbar P”,
the respective T and P of the exhumation-related ret-
rograde metamorphism established for its associated
metagabbro (Figures 9 and 10). Itaguara metagabbro
E-MORB signature points out to oceanic setting and
the association of the metagabbro to spinel metawehr-
lite between Campo Belo/Bonfim and Divindpolis Ar-
chean complexes suggests they represent subducted
and exhumed meta-ophiolitic rocks. The accretionary
prism (characterized by mica-quartz schist ') and ret-
roeclogite ' from Paleoproterozoic Itaguara Sequence
(IS) supports the scenery of subduction and collision-
related exhumation for the investigated region. The age
of 2135 Ma found for titanite from metagabbro inves-
tigated herein (Figure 12), also belonging to this meta-
ophiolitic sequence, seems to indicate the timing of the
prograde blueschist-facies metamorphism of this rock,
just before the ~2.1 Ga regional continental collision.

Evidence in support of the collision that occurred at
about 2.1 Ga is found in monazite inclusions in corun-
dum from IS **. Metamorphic corundum crystals are
associated with continental collision zones and serve
as tectonic indicators of continental collision. These
crystals form due to metasomatism accompanying reac-
tions between aluminosilicate-rich rocks (granitoids,
gneisses, migmatite) and silica-poor ultramafic rocks ',
The monazite found in metamorphic corundum be-
tween gneiss and metaultramafic rock from Itaguara
revealed an age of 2126 + 97 Ma, which is interpreted
as the age of corundum growth. This supports the hy-
pothesis of continental collision between Campo Belo/
Bonfim and Divinépolis Archean complexes at that
time **, which was preceded by subduction of IS.

Brown and Johnson ** and Palin et al. ** suggest
that the Paleoproterozoic Era may have experienced
subduction-related processes similar to those seen on
the Earth today. Just before tectonic exhumation relat-
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ed to the ca. 2.1 Ga collision between the Archean Cam-
po Belo/Bonfim and Divinépolis complexes, the 2.13
Ga subduction setting envisaged for the IS is presented
along X-Y section of the Figure 13 (this geodynamic il-
lustration is the reconstruction previous to geological
setting found along X-Y section of Figure 1B). Figure 13
shows the geological scenario of the accretionary prism
(represented by mica-quartz schist ®') and the 2.20 + 0.05
Ga retroeclogite with an E-MORB signature ! from the
Paleoproterozoic IS close to the ~600 °C isotherm (~60
km depth).

The 2.13 Ga metagabbro and associated metaperido-
tite from Paleoproterozoic IS presented in Figure 3 occur
alongside 2.16 Ga amphibolites (zircon U-Pb age "*),
as shown in Figure 2. Regarding the location of the
investigated metagabbro and metaperidotite in Figure
13, they appear above ~500 °C isotherm (i.e., around
450 °C), corresponding to ~50 km depth attained dur-
ing metamorphic peak. This is the location of the oce-
anic Moho discontinuity in the proposed subducting
slab. Therefore, according to petrographic, chemical
and thermobarometric data alongside geological set-
ting presented in this manuscript, it is reasonable to

suggest that lawsonite and barroisite-bearing metagab-
bro (although lawsonite and barroisite are not from
the same sample, they are from the same rock) with E-
MORB signature associated with spinel metaperidotite
represent a subducted and exhumed Paleoproterozoic
blueschist-facies meta-ophiolitic fragment of oceanic
Moho, now exposed in IS of the southern Sdo Francisco
craton.

There are several Paleoproterozoic subducted and
exhumed rocks represented by 2.10-1.80 Ga eclogite
remnants “*””7*! in collisional and accretionary oro-
gens distributed in the new configuration of Columbia
(Nuna) supercontinent, which has been elaborated
by Chaves "* and presented in Figure 14. The loca-
tion of the subducted and exhumed Paleoproterozoic
blueschist-facies metagabbro herein investigated is
highlighted by white arrow in Figure 14. Based on all
geological aspects presented in this manuscript, the
IS metagabbro could be considered the oldest retro-
gressed blueschist known so far, constraining the age
of such rocks to Paleoproterozoic, pushing back con-
siderably the previous notion of Neoproterozoic as the
oldest age of blueschists.

ot c \CCRETIONARY 0
PRISM
OCEANIC  [JCRUST
MOHOBST™~ =, < S5, GONTINENTAL CRUST
LT e s CON R set ot d30km
0o, TTHOSPHERIC g evv » = + * """ o = .- ConmnentaL
MANTLE -4 -~ __-="" 5
LE -SRI LITHOSPHERIC  Tdopth
ANTLE
R
N
ASTHENOSPHERE Sk
by, OCEANIC CRUST
N\’ IN SUBDUCTION
N\
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Figure 13. The ca. 2.13 Ga subduction setting envisaged for the Itaguara Sequence just before tectonic exhumation
related to the ca. 2.1 Ga collision between Archean Divindpolis (X—not shown in the figure) and Campo Belo/Bonfim (Y)

complexes.
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COLUMBIA (NUNA)
SUPERCONTINENT

1.75 Ga

1.76 Ga
SUBDUCTION GIRDLE

1.95-2.10 Ga collisional orogens
(and Archean Blocks)
- Volga-Don/Baltica
- Tandilia-Piedra Alta/Rio de Ia Plata
- Birimian/West Africa
- Khondalite Belt/North China
- Transamazonian/Amazonia and Sio Francisco craton
- Eburnean and Luizian/Congo craton
- Usagaran/Tanzania
- Glenburg/West Australia
- Limpopo/Kalabari
0 - Taltson-Thelon and Inglefield/Laurentia

OWWNOUNE LN

1.80-1.90 Ga compressional intracontinental orogens
(and Archean Blocks)

11 - Mount Isa and Halls Creek/North Australia
12 - Lesser Himalaya/India
13 - Tarinv/Tarim
14 - TransNorth China/North China
15 - Angara, Akitkan, and SutanySiberia
16 - Zenaga and Reguibat/West Africa
17 - Wopmay/Laurentia

1.80-1.90 Ga accretionary orogens

(and Archean Blocks)
18 - Nimrod-Ross/East Antarctica .

19 - Trans Hudson, Torngat-Quebec and Nagssugtoqidian/Laurentia
20 - Lapland and Svecofennian/Baltica

21 - Rio Negro-Juruena/Amazonia

22 - Ubendian/Tanzania

Figure 14. Distribution of concentric collisional (1.95-
2.10 Ga), accretionary and compressional intracontinental
(1.80-1.90 Ga) orogens and undiscriminating Archean
blocks on 1.75 Ga Columbia (Nuna) supercontinent. White
circles represent locations of 2.10-1.90 Ga retroeclogites
preserved inside contemporary accretionary and
collisional orogens. White arrow indicates the location of
the IS (open white circle), with ~2.1 Ga retroeclogite and
probable blueschist investigated herein (modified from
Chaves "%, permitted reproduction—copyright Elsevier).
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