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Abstract

Accurate wind power forecasting is essential for the seamless integration of wind energy into modern
power systems, yet it remains a challenging task due to the inherent variability of wind, complex
atmospheric dynamics, and the influence of local terrain. Traditional forecasting models often struggle to
capture these complexities, particularly for short-term and intra-hour predictions. Machine learning (ML)
methodologies have emerged as transformative tools for addressing these challenges. By leveraging large
datasets and advanced algorithms, ML models can identify intricate patterns and significantly enhance
prediction accuracy. Techniques such as deep learning, ensemble methods, and hybrid approaches
integrate weather data with historical power output to improve spatial and temporal resolutions. Despite
their promise, challenges like data quality, model interpretability, and computational demands require
further research to fully optimize ML applications in wind power forecasting. The global transition
toward smart grids, driven by the increasing penetration of renewable energy sources (RES), underscores
the importance of reliable forecasting. Wind energy, as a key RES, plays a pivotal role in reducing
greenhouse gas emissions and mitigating global warming. However, the stochastic nature of wind energy
complicates power system analysis and management. Accurate forecasting is critical for enhancing power
system security, supporting sustainability, and facilitating economic transactions in energy markets. This
review examines ML-based methodologies for wind power forecasting, categorizing them into supervised,
unsupervised, semi-supervised, and reinforcement learning techniques. It highlights their adaptability,
scalability, and real-time capabilities while addressing challenges posed by noisy data, dynamic system
behaviors, and complex grid configurations. Hybrid and ensemble models, in particular, demonstrate
exceptional potential in overcoming these challenges. By identifying research gaps and emerging trends,
this study provides strategic insights into developing innovative ML-driven forecasting methods,
supporting effective grid management in an energy ecosystem increasingly dominated by RES.

Keyword: Wind power forecasting; Machine learning; Renewable energy; Smart grids; Hybrid models;
Sustainability

1. Introduction

The Integrating wind energy into modern power grids poses substantial challenges due to its
intermittent and unpredictable nature [1][2]. The variability of wind can disrupt grid stability,
complicate load balancing, and necessitate costly reserve capacities to manage fluctuations.
Furthermore, the decentralized and remote locations of wind farms often strain transmission
infrastructure, requiring advanced grid management strategies to ensure reliable operation. The
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rising global demand for energy, coupled with the finite nature of fossil fuel reserves, has driven
a significant shift towards RES [3][4]. Among these, wind energy stands out as an abundant,
clean, and sustainable resource. However, the generation of wind power is highly dependent on
geographical and meteorological conditions, introducing complexity and uncertainty to its
integration into power systems. Accurate wind power forecasting is crucial to addressing these
challenges. By predicting wind energy output with high precision across various time horizons,
forecasting enables the safe and stable operation of power grids [5]. It facilitates effective
scheduling, dispatching, and resource allocation while minimizing disruptions caused by wind
variability. Considering the inherent volatility and randomness of wind, this study explores the
potential of artificial intelligence (AI)-based approaches for wind power forecasting[6][7][8]. AI
offers transformative solutions to overcome the complexities of wind energy integration[9][10].
By leveraging AI-driven forecasting models, grid operators can achieve more accurate
predictions of wind energy output, enabling better operational planning [11]. Moreover, AI
enhances real-time grid optimization through advanced energy management systems, dynamic
demand-response mechanisms, and predictive maintenance for wind turbines and associated
infrastructure [12][13][14]. These innovations help mitigate variability and support the seamless
incorporation of wind energy into the combined operation of plant [15]. Addressing these issues
will enable the full realization of AI’s potential in driving a sustainable and reliable energy
ecosystem dominated by renewable sources like wind energy. Forecasting methods broadly fall
into three categories:

 Physical Approach: Considers meteorological and geographical factors, such as
humidity, surface roughness, temperature, terrain quality, and hub height.

 Statistical Approach: Identifies relationships between input and output variables using
historical data.

 Hybrid Method: Combines physical and statistical approaches, leveraging their
respective strengths to improve accuracy.

2. Forecasting Issues

Real-time forecasting in dynamic grid environments is a pivotal challenge for the effective integration of
renewable energy sources like wind. The unpredictability of wind patterns, influenced by rapidly
changing meteorological conditions, poses difficulties in aligning power generation with fluctuating
demand. In dynamic grid environments, where load profiles and generation sources are constantly shifting,
the stakes for accurate real-time forecasts are even higher [16]. The Fig. shows the different forecasting
issues in power systems and these are described as given in Figure 1.
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Figure 1 Different forecasting issues in power systems

Several forecasting challenges arise in power systems, as illustrated in Figure 1. These include
electricity load forecasting, electricity price forecasting, wind power forecasting, and solar
forecasting. Each presents unique complexities:

 Electricity Load Forecasting: Predicting future load demands over different time scales,
ranging from hourly to yearly, to optimize grid operations.

 Electricity Price Forecasting: Estimating future electricity prices, closely tied to load
predictions, to maximize market efficiency and profitability [17].

 Wind Power Forecasting: Addressing the inherent uncertainty of wind velocity to
enhance the integration and efficiency of wind energy in power grids. Accurate
forecasting reduces system balancing costs and improves planning [18].

 Solar Forecasting: Predicting solar radiation for optimal operation and management of
solar power plants using intra-hour, intra-day, and day-ahead perspectives [19].

Key challenges in AI-driven wind power forecasting include:

Wind power forecasting is inherently stochastic due to the unpredictable nature of wind, which
varies in speed, direction, and turbulence[14]. Accurately predicting these fluctuations is
challenging, often resulting in large discrepancies between forecasts and actual production,
particularly over short time frames. This unpredictability, along with rapid changes in electricity
demand and weather conditions, leads to market price fluctuations, introducing risks for both
energy producers and consumers, especially in deregulated markets[20]. Furthermore,
forecasting consumer energy demand is complicated by factors like weather, economic activity,
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and social behavior. As the grid incorporates more renewable energy sources, including wind
and solar, these stochastic fluctuations make balancing supply and demand increasingly difficult,
as traditional power plants cannot adjust as quickly to these rapid changes [21].

 Temporal and Spatial Variability: Rapid changes in wind speeds complicate accurate,
real-time predictions.

 Grid Balancing: Unreliable forecasts can disrupt frequency and voltage stability,
requiring costly balancing measures.

 Data Latency: Delays in data transmission impact the accuracy and timeliness of
forecasts.

 Integration of Distributed Energy Resources (DER): Coordinating distributed energy
sources with wind generation adds complexity to grid management.

AI-based methodologies offer significant promise in overcoming these challenges. Techniques
such as deep reinforcement learning, recurrent neural networks (RNNs), and convolutional
neural networks (CNNs) are particularly effective in processing large, high-frequency datasets to
capture non-linear dependencies in wind patterns [22][23]. AI models can also incorporate real-
time grid data, weather forecasts, and historical performance to dynamically adjust predictions.
Moreover, AI-powered energy management systems can support automated decision-making,
such as activating demand-response programs, optimizing battery storage utilization, or
curtailing generation to prevent overload. These systems enable a proactive approach to grid
management, ensuring stability even amidst the variability of wind energy. Despite these
advancements, the practical implementation of AI in real-time forecasting faces challenges such
as the need for robust data pipelines, the high computational requirements of advanced models,
and the need for interpretability to build trust among grid operators. Addressing these hurdles
will be critical for the successful deployment of real-time forecasting solutions in dynamic grid
environments.

3. Need of Wind Power Forecasting in Power Systems

AI-driven real-time wind power forecasting plays a transformative role in market strategies and
decision-making within dynamic energy systems. By providing accurate and timely predictions,
it empowers stakeholders to make informed decisions that optimize operations, enhance
profitability, and ensure grid stability. Wind power forecasting is crucial for:

 Managing the variability of wind energy.

 Aligning electricity production with demand.

 Facilitating grid operators in planning and decision-making.

 Optimizing the design and location of future wind power plants.
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 Improving grid reliability and operational efficiency under variable conditions.

 Supporting contract negotiations and market strategies between suppliers and customers.

 Enhancing bidding strategies for power suppliers and consumption plans for end-users.

4. Challenges in Wind Energy (Power) Forecasting Approaches

Integrating wind energy into modern grids is essential for a sustainable future, but it presents
significant difficulties due to its intermittent and unpredictable nature [24]. These challenges are
compounded by non-linear and stochastic behaviors, which can impact both forecasting and grid
stability. AI has emerged as a critical tool to address these complexities, improving forecasting
accuracy, optimizing grid management, and supporting decision-making in market environments.
Forecasting approaches face various challenges due to the non-linear and dynamic nature of
wind power generation [25][26]. The key methods include:

 Physical Approach: Relies on meteorological factors and numerical weather predictions
(NWP) but struggles with short-term accuracy.

 Statistical Approach: Utilizes historical data to identify correlations but is limited in
capturing non-linear dynamics.

 Hybrid Approach: Combine physical and statistical techniques, improving forecasting
accuracy by leveraging strengths from both.

Recent advancements highlight the integration of AI and big data technologies. For instance:

Zhao et al. (2022) [27] Explored the role of big data and AI in wind power forecasting,
emphasizing advancements in feature engineering, deep learning, and hybrid techniques. In
particular, the speed of the wind, meteorological information, and imagery from satellite data are
among the several forms of data that are identified and utilized in AI-based wind energy forecast
studies. Moreover, to potential problems, including processing massive amounts of data and
enhancing accuracy with cutting-edge AI approaches, the report emphasized the expansion of
analysis on this subject, especially after 2018. Furthermore, it emphasized frontier breakthroughs
and study topics in wind power forecasting, such as feature engineering, machine learning, deep
learning, data cleaning, large data processing, and hybrid forecasting techniques.

Lagos et al., (2022) [28] Reviewed wind power forecasting methods, focusing on
prediction timeframes, probabilistic models, and integration into distributed power systems and
microgrids. Resulting in the discovery of several groups of connected articles. Each cluster is
represented by a cluster that is connected to shared references or content. The clusters encompass
a broad variety of subjects related to wind power forecasting, including statistical models, ANN,
NWP, and hybrid models. The use of probabilistic prediction and the incorporation of wind
power into distributed power plants and micro-grids are emphasized. Specifics on the data
sources and performance assessment indicators for the models used for forecasting are also
included in the conclusion.
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5. Input Variables for Wind Forecasting

The highly uncertain nature of wind originates from the variability and unpredictability of its
derivatives, significantly impacting the reliability of power systems. Improved forecast reliability
directly correlates with reduced operational costs of wind power integration into the grid. This
relationship highlights that large-scale wind power adoption can lead to substantial cost savings
for wind farm operators while enhancing overall system efficiency. Despite these advantages,
wind power forecasting remains a challenging task due to the inherently stochastic nature of
wind. Wind speed time series exhibit unique characteristics, including high volatility, non-
linearity, non-stationary behavior, and significant complexity. The selection of input variables is
crucial for the accuracy of wind power forecasting models. The effectiveness of these models
depends on the integration of relevant variables and their historical behaviors. Input variable
selection can be broadly categorized into two types:

 Exogenous Variables: Include external factors such as weather conditions or market
data that influence wind power dynamics.

 Non-Exogenous Variables: Focus solely on intrinsic wind power characteristics without
external dependencies.

Noman et al. (2021) [29] highlighted the difficulty in forecasting wind speed because of
its erratic and non-stationary characteristics, particularly when considering the integration of
wind power into the electrical grid. The investigated system uses a selection of features and
transferred learning methods to present the multistep short-term speed of the wind forecasting
system. It assessed the effectiveness of several models, such as the persistent approach, shallow
neural networks, and methods for transfer learning. The results highlighted that the nonlinear
auto-regressive exogenous (NARX) model achieved reduced mean absolute error (MAE) and
root mean square error (RMSE) in wind speed prediction when compared to other
techniques. The influence of input selection of variables is also covered, which also offers a
thorough analysis of the forecast outcomes. The overall goal of the project is to increase wind
speed forecast accuracy to facilitate improved wind power integration into the electrical grid.

Zulkifly et al. (2021) [30] provided a system of rankings to assess how well ML models
predict grid-connected photovoltaic systems' (GCPVs) production in Malaysia. Four ML models
are used in their study: decision trees, linear regression (LR), gaussian process regression (GPR),
and support vector machines (SVM). Mean Absolute Deviation (MAD), Mean Absolute Error
(MAE), calculation time, Root Mean Squared Error (RMSE), and coefficient of determination
(R2) are among the assessment metrics that are employed. The method does not include other
practical methods since it relies on high-resolution ground-based observations of PV system
power production and meteorological information. The amount of computing power needed for
every model is not taken into account in their study; this change is based on the size and
complexity of the dataset.
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6. Forecasting Models

Physical Models (Numerical Weather Prediction - NWP): Physical models incorporate
atmospheric physics to predict wind behavior.

Haupt et al. (2020) [31] highlighted the creation of the Kuwait Renewable Energy
Prediction System (KREPS), which forecasts the output of energy from renewable sources with
an emphasis on solar and wind power through the integration of AI techniques with physical
models. The system forecasts wind and solar power generation using measurements, atmospheric
physics, and AI techniques. The Analog Ensemble (AnEn) is used to provide probabilistic
predictions and quantify unpredictability, while ML techniques like StatCast-Wind and StatCast-
Solar are utilized for short-range forecasting. The design of the KREPS display, which enables
users to examine and interact with power prediction products as well as historical forecasts and
observations, is also covered. The findings highlight that AI techniques improved sustainable
energy forecasting accuracy and offered useful decision assistance for end users.

Guo et al. (2022) [32] explained that the use of wind energy is becoming more and more
important, and reliable wind power forecast models are necessary to keep the electricity grid
stable. It draws attention to the many classifications and techniques of wind energy forecasting,
with a particular emphasis on the application of AI models, especially for short-term forecasting.
It also highlighted how physical elements, such as the wake effect in wind farms, affect the
accuracy of wind power predictions. It presented a wake-effect-aware neural network system
with physics inspiration to increase the precision of short-term wind energy forecasts.

Statistical Models (Time Series Analysis): Statistical models analyze historical data to detect
patterns and trends.

Jiang et al. (2021) [33] explored the difficulties in predicting wind speed and the limits
of several forecasting techniques, including AI, statistical, numerical modeling, and spatial
correlations. In addition to introducing the idea of combined models for forecasting, it suggested
a unique combination approach for forecasting wind speed shortly. The four components of the
suggested system are interval forecasting, point forecasting, system assessment, and optimum
sub-model selection. The construction of an integrated forecast model, the best sub-model
selection, and interval predictions are only a few of their study's achievements that are
highlighted. Finally, an analysis of the suggested system and its possible uses in power systems
is included.

Kim and Hur (2020) [34] highlighted the significance of forecasting wind power in light
of the growing worldwide capacity for energy from renewable sources, of which wind energy is
a significant component. It described various strategies for wind power forecasting, such as
statistical models, physical models, and their combinations. Presented a short-term wind power
forecasting model that makes use of spatial modeling to increase the accuracy of the wind speed
forecast data. It mixed several statistical techniques, including autoregressive integrated moving
averages with exogenous variables (ARIMAX), SVR, and Monte Carlo simulation (MCS). The
suggested model was validated through an investigation on a turbine farm located on Jeju Island,
which showed an increase in accuracy through the use of an ensemble forecasting technique. To
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tackle the issue of intermittent power fluctuations, it seeks to allow dependable electrical grid
operation and the incorporation of renewable energy sources.

Combined (Physical + Statistical) Models: Combined models leverage the strengths of both
statistical and physical methodologies.

Duan et al. (2022) [35] explained the creation of an innovative hybrid model for
forecasting wind output in the short term. To get around the drawbacks of linear weighting
combinations and increase accuracy in forecasting and stability, this model makes use of a
decomposition technique, a nonlinear weighted combination, and two deep learning models
(LSTM and PSO-DBN). Variational mode decomposition (VMD) is used by the model to break
down the original wind energy series and extract local characteristics. LSTM and PSO-DBN are
then used to build sub-series models for prediction. A hybrid forecasting model is produced by
combining these models using a nonlinear weighting combining method based on PSO-DBN.
Wind velocity information from a Chinese wind farm is used to validate the accuracy of the
model and show how successful it is in comparison to other available techniques.

Tian et al. (2021) [36] explained the difficulties caused by wind power's erratic and
intermittent nature, which might jeopardize the stability of the electrical energy supply. Their
study suggests a unique decomposition-based wind speed forecasting model as a solution to this
problem. The model separates historical data on wind speeds into stable variables with various
frequencies using variational modal decomposition. After that, an echo phase system is used to
forecast each component, and its parameters are optimized using an enhanced whale
optimization method. Combining the forecasts from every part yields the final forecast. The
model outperforms other innovative forecasting algorithms in terms of precision and capacity to
capture fluctuations in wind speed when verified using actual data on wind speeds.

6.1 Wind Power Forecasting: Techniques and Advancements

Wind power forecasting has evolved significantly, employing a range of techniques to address
the complexities of predicting this stochastic and highly volatile resource. Traditional statistical
approaches, such as ARIMA and linear regression, provide foundational insights but often
struggle in dynamic scenarios. Physical models based on NWP offer detailed forecasts but are
computationally intensive and data-dependent. Machine learning (ML) and hybrid techniques
have emerged as powerful tools, handling non-linear, non-stationary, and volatile time series
data with superior accuracy.

Suárez-Cetrulo et al. (2022) [37] tackled the challenges of minute-by-minute wind
power forecasting for energy markets. They proposed a novel method that accounted for turbine
degradation and curtailing, using ML algorithms to evaluate predictability and assess wind-
power relationships. Boosting ensembles demonstrated superior runtime efficiency, making them
a cost-effective choice for day-ahead wind output forecasting. Table 1 shows the reviews by
various authors about the State of Art for wind power Forecasting

Table 1 Review of wind power Forecasting

Author &
Year Aim Technique Used Advantage Limitation
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Zhao et al.
(2022) [27]

Identify the data types
used and analyze the big
data and AI applied in
WPFs.

AI techniques and
big data analysis

Increased
effectiveness and
precision of forecasts

Handling big data
sets

Lagos et al.
(2022) [28]

Describe the models used
to anticipate wind energy,
with an emphasis on
forecast uncertainty.

Statistical, ANN,
NWP, and hybrid
models

Emphasize different
forecasting techniques
and uncertainty
considerations.

There is a narrow
emphasis on
particular prediction
horizons.

Noman et
al. (2021)
[29]

Create a model for
predicting short-term wind
speed and assess its
effectiveness.

Methods of transfer
learning, shallow
neural networks,
and persistence

Greater accuracy in
predictions, reduced
MAE, and RMSE

Constrained with
short-term
forecasting

Zulkifly et
al. (2021)
[30]

Examine AI methods to
predict the output of
GCPV systems.

Decision Tree,
SVM, GPR, and
Linear Regression

Use of high-resolution
data and thorough
evaluation metrics

Does not include
their study of
computing
resources.

Haupt et al.
(2020) [31]

Create a forecasting tool
for energy from renewable
sources, with an emphasis
on solar and wind energy.

Analog Ensemble,
StatCast-Wind, and
StatCast-Solar

Improved forecasting
precision and
probabilistic forecasts

Restricted to
predicting during a
brief period.

Guo et al.
(2022) [32]

Examine the significance
of WPF and present a
neural network with
physics influences.

Neural network
with physics
inspiration

Improved accuracy of
short-term wind power
forecasts

Limiting focus on
near-term
forecasting

Jiang et al.
(2021) [33]

Provide a combination
forecasting model and
assess its efficacy for
predicting wind speed.

Integrated
prediction model

Choosing the best sub-
model and interval
prediction

inadequate mention
of practical
implementation

Kim and
Hur (2020)
[34]

Provide a short-term
forecast of the wind power
model and use an
ensemble technique to
evaluate it.

MCS, SVR, and
ARIMAX

Higher precision with
ensemble forecasting

Minimal focus is
paid to long-term
projections.

Duan et al.
(2022) [35]

Create a hybrid model and
assess its efficacy for
projecting wind power in
the short term.

VMD, PSO-DBN,
and LSTM

Increased stability and
precision

Confined to making
short-term forecasts

Tian et al.
(2021) [36]

Provide a model for
forecasting wind speed
based on decomposition
and assess its capabilities.

Echo state network,
variational mode
decomposition

Increased precision
and recording of
changes in wind speed

Constrained to
forecasting wind
speeds.

Suárez-
Cetrulo et
al. (2022)
[37]

Create a method to
forecast high-frequency
wind power and assess it
with ML.

Boosting
ensembles

More accurate
prediction at a lower
cost than competing
MLmethods

Restricted to
forecasting one day
ahead of time.

6.2 State of Art for Wind Power Forecast

Chai et al (2023) [38] focused on the model's framework and price factors while
analyzing 62 literature parts on energy price forecasting (EPF) from 2012 to 2022. The
significance of performance evaluation is emphasized, along with the use of data preparation and
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model development to increase accuracy. The purpose of the document is to offer information to
market users and decision-makers regarding electricity.

Malhan and Mittal (2022) [39] offered a unique ensemble forecast methodology for
long-term hydro and wind energy generation projection. In the initial phase, the model combines
ARIMA and Bi-LSTM prediction; in its second stage, it employs diligent searching algorithms to
find seasonal trends. The model is appropriate for forecasts made a year in advance, as evidenced
by the low rate of errors for medium- to long-term projections in the data. The model's goal is to
assist with strategic planning in power networks with significant penetration of energy from
renewable sources. Table 2 shows the reviews by various authors about the State of the art for
Wind Power Forecast

Table 2 Review of Wind Power Forecast

Author & Year Aim Technique Used Advantage Limitation
Chai et al.
(2023) [38]

Examine forecasting
power prices, with a
focus on model
optimization.

Different models
for predicting

Insights for decision-
makers and
participants in the
market

This only includes
projecting power
prices

Malhan and
Mittal (2022)
[39]

The current ensemble
forecasting system to
estimate wind and
hydropower over the
long term

Diligent Search
Algorithm, Bi-
LSTM, and
ARIMA

Minimum mistake
rates for projections
that are mid- to long-
term

Only able to make
long-term forecasts

6.3 Key Techniques and Methodologies

 Input Variables & Their Selection Techniques

Singh et al (2021) [40] have outlined the five best practices for robust regression ML-
extra tree regression, random forest (RF), decision-tree, gradient boosting machine (GBM), and
kNN that are employed to boost the precision of short-term wind energy generation projections
in Turkish wind farms located in the country's westward. Drawing polar diagrams enables one to
investigate how input variables, such as wind direction, and speed, influence the creation of wind
energy. The results show that a technique employing GBM learning performs better in estimating.

Mujeeb et al (2019) [41] have mentioned a two-phase DL method. Wavelet Packet
Transform (WPT) was developed in the first phase to break down the previous wind power
signals. Several external inputs, including calendar variables and Numerical Weather Prediction.
Efficient Deep Convolution Neural Network (EDCNN), a novel prediction model, was used in
the second stage for calculating wind energy. The Maine windmill ISO NE, USA massive data
set was employed to evaluate the performance of the recommended predictive method.

 Physical (NWP) Models

Zhang et al (2020) [42] have built a Seq2Seq wind power output prediction model by
fusing a multivariate time series clustering approach with a DL network. As inputs, historical
wind data from actual wind farms and NWP data were used. The feature vectors were projected
into the K-means method using the dimension reduction technique t-SNE, and further clustering
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of the inputs into distinct groups was achieved by employing diminished dimension. The
predicted model exceeded other available forecasting techniques, according to the data.

Zhang et al (2019) [43] have provided background value optimization to estimate wind
speed. Following this, fractional-order grey system models of varying orders were built. To
lower the uncertainty, two NWP outputs, such as ECMWF and GRAPES-MESO, have been
included in the prediction model. To fit the wind speed power scatter operation data, the support
vector regression model was developed. The outcomes demonstrate that the prediction accuracy
was increased by the presented grey combination strategy.

 Statistical Models

Ibrahim et al (2021) [44] highlighted how the tested dataset's forecasting ability is
enhanced by the adaptive dynamic particle swarm algorithm combined with a guided whale
optimization technique, which modifies the LSTM classification method's parameters. For
feature selection, this method was used. RF, k-NN, LSTM, Average ensemble, and NN are used
to compare the outcomes of this scenario. An examination of several tests, such as ANOVA and
Wilcoxon's rank-sum tests, was conducted statistically to verify the algorithm's correctness.

 Hybrid (Physical + Statistical) Models

Donadio et al (2021) [45] have created two hybrid ANN and NWP models for
forecasting wind power in extremely complicated terrain. The temporal resolution of the
produced models is finely tuned. The initial model predicts each wind turbine's energy output
precisely. The second version uses a fitted power curve to anticipate wind speed first, then
converts it to power. Four normalized error measurements are used to assess the performance of
various models. Python was used to automate tasks.

Devi et al (2020) [46] have started using a hybrid forecasting model to anticipate wind
power to enhance prediction performance. The subseries data that is recovered using ensemble
empirical mode decomposition (EEMD) was forecasted using an upgraded LSTM-enhanced
forget-gate network (LSTM-EFG) model. The experimental findings demonstrate that the
aforementioned forecasting model outperforms conventional forecasting models and functions as
an operational tool for the management of wind power facilities.

Table 3 Research Gaps from the Preceding Works

Author’s names and
citations Methods used Advantages Disadvantages

Singh et al (2021) [40] ML (Extra Tree
Regression, RF,
Decision Tree, GBM,
kNN)

Boosts wind energy predictions High Complexity

Mujeeb et al (2019) [41] Two-phase DL (WPT,
EDCNN)

Handle higher-level
computational tasks

Expensive

Zhang et al (2020) [42] Seq2Seq Exceeds other prior techniques Inability to retain
longer sequences

Zhang et al (2019) [43] Fractional-Order Grey
System, Support
Vector Regression

Increased Prediction Accuracy Limited availability of
tools



Clean Energy Technologies Volume 1 Issue 1 (March 2025)

28

Ibrahim et al (2021) [5] Adapti
ve Dynamic Particle
Swarm + Guided
Whale Optimization

Easy implementation Slow Convergence

Khosravi et al (2018)
[52]

SVR-RBF Suitable for complex data
patterns

Struggle with noisy
data

Donadio et al (2021)
[45]

Hybrid ANN and
NWP models

Precise output for wind power
predictions

Potential complexity

Devi et al (2020) [46] EEMD for subseries
data recovery and
LSTM-EFG model for
forecasting.

Enhanced wind power
predictions

Faces implementation
Struggle

6.4 Input Data Pre-processing

Santhosh et al (2019) [47] have suggested a novel, strong hybrid DL approach that
preprocesses the raw data to improve prediction accuracy. Ensemble empirical mode
decomposition, the most efficient signal decomposition method, was employed for preprocessing.
Four constrained Boltzmann machines were assembled to create the Deep Boltzmann Machine
model. To determine the time series' outcome, the anticipated outcomes are assessed. These
algorithms produced more accurate findings.

López et al (2018) [48] have created the ESN using an LSTM design that blends the
features of the two networks. This method was used as a target for the input signal, to extract
characteristics automatically as the autoencoder approach; subsequently, a quantile regression
was used to obtain a robust estimate of the expected target. These two layers are particularly
important to the training process of this network: the output and hidden layers. The experimental
findings demonstrate that the proposed strategy performs better across all global measures
compared to the WPPT model.

Table 4 Reviews of Various authors on wind power predictions

Author’s name and
citations

Methods used Advantages Disadvantages

Santhosh et al (2019) [47] Ensemble Empirical Mode
Decomposition, DBM

Less human interaction Complexity in Feature
Extraction

López et al (2018) [48] Quantile regression,
autoencoder, and LSTM

Automatic feature
extraction

Complexity in the
training process

6.5 Wind Power Estimation Techniques

Demolli et al (2019) [49] have created ML methods that rely on daily wind speed data.
The daily mean wind speed values were constructed using the hourly wind speed data, and the
daily total wind power was estimated using the daily wind speed and standard deviation The
findings demonstrated the viability of the RF, SVR, and xG Boost, SVR algorithms in long-term
daily total wind power forecasting. These algorithms offer high power efficiency in unidentified
geographic areas. RF is the most effective algorithm and provides acceptable outcomes.

Mujeeb et al (2019) [41] have mentioned a two-phase DL method. Wavelet Packet
Transform (WPT) was developed in the first phase to break down the previous wind power
signals. Several external inputs, including calendar variables and Numerical Weather Prediction.
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Efficient Deep Convolution Neural Network (EDCNN), a novel prediction model, was used in
the second stage for calculating wind energy. The Maine windmill ISO NE, USA massive data
set was employed to evaluate the performance of the recommended predictive method.

 Statistical Models
Statistical models are widely used for wind power forecasting due to their ability to analyze
historical data and identify patterns between input variables (e.g., wind speed, direction) and
output (power generation). Techniques such as autoregressive integrated moving average
(ARIMA), regression analysis, and support vector machines (SVM) are commonly employed.
These models are effective for short- to medium-term forecasts and are computationally
efficient [50].

Yin et al (2021) [51] have proposed a revolutionary two, three, one step wind power
forecasting method called SHD-CSO-ELM (Secondary Hybrid Decomposition-Crisscross
Optimization Algorithm-Extreme Learning Machine). The original wind power time series was
sliced down using a novel secondary decomposition technique developed during the data pre-
processing stage. The original time series was reduced into many intrinsic mode functions using
the empirical mode decomposition method. The given method attained good efficacy.

Yildiz et al (2021) [52] have recommended using the two-step DL approach to anticipate
wind power. The process of extracting features based on variational mode decomposition and
converting them into images is covered in the first phase. Next, wind power was forecasted using
an enhanced residual-based deep CNN. A dataset comprising wind power, wind direction, and
meteorological wind speed was used. These variables are intimately connected. A wind farm in
Turkey provided the combined dataset.

 Traditional Models

Duan et al (2021) [53] have started developing a reliable short-term hybrid wind power
forecasting model using an LSTM neural network, which combines Sample Entropy and an
improved variational mode decomposition. Next, to create a unique, robust hybrid model for
wind power forecasting, the MCC was also used to replace the MSE in the traditional LSTM
network. Lastly, to test the efficacy, four experiments were carried out utilizing actual data from
two wind farms in China at various sampling intervals.

Heydari et al (2019) [54] have started using the Group Method of Data Handling Neural
Network, Pareto analysis, and the modified Fruit Fly Optimization Algorithm to estimate wind
speed. Furthermore, compared to the other models, this one performs better and has an
acceptable error rate. The microgrid located on the island of Favignana in southern Italy has been
subjected to the examination of renewable energy forecast. The findings indicate that this model
performs well over a range of confidence levels.

 Linear or Time Series (TS) Models

Santamaría-Bonfil et al (2016) [55] have created a hybrid approach for wind speed
forecasting that is based on Support Vector Regression. Time series of univariate wind speed
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were used to train this model. A genetic algorithm was used to adjust the parameters.
Additionally, the time series stationary transformation was assessed. The approach yielded more
accurate findings, according to the results.

Wang et al (2018) [56] have announced the creation of a new hybrid model for
forecasting wind speed in the short term. This model includes adaptive noise, an enhanced
complementary ensemble empirical mode decomposition, and an extreme learning machine with
an autoregressive integrated moving average. This research also presents the findings from a
comparative analysis of time series data pretreatment and postprocessing. This approach
performs well enough.

Table 5 Several Reviews by various authors on wind power forecasting

Author’s names and
citations

Methods used Advantages Disadvantages

Demolli et al (2019)
[49]

ML (RF, SVR, xG Boost) Viability in long-term Tuning of
hyperparameters

Mujeeb et al (2019)
[50]

Two-phase DL (WPT,
EDCNN)

Handle higher-level
computational tasks

Lack of
interpretability

Yin et al (2021) [51] SHD-CSO-ELM Improves Stability Requires more
resources

Yildiz et al (2021)
[52]

Variational Mode
Decomposition, Enhanced
CNN

Weight Sharing Data Dependency

Duan et al (2021)
[53]

LSTM, improved variational
mode decomposition, Sample
Entropy, MCC

Robust hybrid model Dependency on data
quality

Heydari et al (2019)
[54]

Pareto analysis, Group
Method of Data Handling
Neural Network, modified
Fruit Fly Optimization
Algorithm

Better performance Sensitivity to
hyperparameter
tuning

Santamaría-Bonfil et
al (2016) [55]

Genetic algorithm, Support
Vector Regression

Hybrid approach Parameter tuning
challenges

6.6 Artificial Intelligence (Ai) Models

Aly (2020) [57] has reported on extremely precise hybrid DL clustered models for
predicting wind speed and power utilizing various AI systems. In this study, several
combinations of Recurrent Fourier Series (FS), ANN, Wavelet (WNN), and Kalman Filter (RKF)
are employed. Tests and proposals are made for twelve distinct hybrid vehicles. The K-fold
cross-validation approach was used to validate this work utilizing several unseen data sets. All
other models are not as good as the hybrid clustered model of RKF and WNN.

Lin and Liu (2020) [58] have implemented a DL neural network with a 1-s sample rate
to forecast wind power using a very high-frequency SCADA database. The physical operation of
offshore wind turbines served as the basis for the engineering of the input characteristics, and
Pearson product-moment correlation coefficients were used to further examine the relationships
between them. The results of the simulation show that the projected method can forecast wind
power with high accuracy while lowering computing time and cost.
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6.7 Probabilistic or Interval Forecasting

Zhou et al (2019) [59] have developed the K-Means-LSTM network model and the
nonparametric kernel density estimation model for wind power spot prediction. To create a new
LSTM sub-prediction model, the K-Means clustering technique groups wind power effect
variables into multiple clusters. The mean integrated squared error criteria were used to optimize
the bandwidth. Based on simulation findings, the suggested model has improved prediction
accuracy, and the bandwidth optimization model has more narrow prediction intervals with
higher interval coverage rates.
6.8 Comparison of Computation Time

Chen et al (2018) [60] have suggested a new technique based on EO, SVRM, and
LSTMs called Ensem LSTM. This technique uses a nonlinear learning ensemble for DL time
series prediction. The implicit information of wind speed time series is used and explored by a
cluster of LSTMs with different neurons and hidden layers. The fine-turning top layer provided
the final ensemble forecast for wind speed. It is capable of more accurate predictions.

Jiao et al (2018) [61] have announced the creation of a novel forecasting technique using
the BP algorithm and stacked auto-encoders. Initially, the features are extracted from the
reference data sequence using a three-layered SAE. The BP method was used to adjust the
network's weights following the addition of one output layer to the stacked autoencoders. The
PSO was implemented to obtain the optimal network design. The experimental findings
demonstrate that this strategy produces more consistent and effective performance for short-term
wind power forecasting. Under various time steps, the accuracy improvement is, on average,
12% higher.
6.9 Methods of Wind Power Forecasting

Wang et al (2020) [62] have unveiled a hybrid approach to calculating wind power that
employs Bayesian model averaging and Ensemble Learning (BMA-EL). To generate different
training subsets, SOM clustering, and K-fold cross-validation are implemented. To develop the
system, these learning subsets are exported into three fundamental learners: RBFNN, BPNN, and
SVM. With more precision and security, this approach can forecast wind power production
under different scientific circumstances.
 Deterministic or Point Forecasting

Fu et al (2018) [63] have offered a hybrid model for 10-min wind speed forecasting that
is based on an LS-SVM model and uses an altered version of the Cuckoo Search method to
improve forecasting model parameters. When compared to the other four models, it can produce
meaningful predicting results. The suggested hybrid model also shows the least variations in
MAPE values at each forecasting point, suggesting that it can increase wind speed forecasting
accuracy. It might increase the use of renewable energy sources and be used for wind farm
dispatch.

Hu et al (2020) [64] have established a stacked hierarchy of reservoirs (Deep ESN) by
integrating the DL framework into the fundamental echo state network to estimate energy
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consumption and wind power output. To verify the correctness and dependability of the provided
model, two comparison instances and an expanded application are examined. These examples
demonstrate how this model works better than the current ones. Furthermore, Deep ESN exhibits
significant gains in terms of mean absolute error, root mean square error, and other metrics when
compared to the echo state network.

 Probabilistic or Interval Forecasting

Hossain et al (2021) [23] have started using a DL model to increase the accuracy of the
forecast for extremely short-term wind power output at Australia's Bodangora wind farm, which
is situated in New South Wales. It was made up of gated recurrent unit (GRU) layers,
convolutional layers, and a fully connected neural network. The 5-minute interval data sets from
the wind farm are utilized. Another set of data from Australia's Capital wind farm was utilized to
assess the effectiveness even more. It is noted that in both data sets, this model performs better.

Table 6 Various reviews by authors regarding wind power predictions

Author’s names and
citations

Methods used Advantages Disadvantages

Chen et al (2018) [60] Ensemble LSTM Improved forecasting
accuracy

Evaluation against
benchmark models for
generalization and
robustness

Jiao et al (2018) [61] BP Algorithm, Stacked Auto-
Encoders

Applicable to various
data types

Consume more memory
resources

Wang et al (2020) [62] Hybrid (BMA-EL, RBFNN,
BPNN, SVM)

More precision and
security

Has memory limitations

Fu et al (2018) [63] LS-SVM Improved wind speed
forecast accuracy

Complexity in hybrid
methods

7. Forecast Techniques and Methodologies

The numerous debates and important problems in wind power forecasting research are
essential to improving the precision and dependability of these forecasting systems. The choice
and optimization of input variables for various forecasting models is a major topic of study.
Numerous research works emphasize how crucial it is to choose pertinent input factors such as
wind direction, speed, calendar variables, and NWP data. Predictive models for wind energy
generation that combine statistical and physical methods have demonstrated the potential for
increasing forecast accuracy. To further improve prediction accuracy, there are still difficulties in
determining the best combination of input variables and improving preprocessing methods. A
key issue for discussion is to assess the estimation speeds and scalability of different approaches
for predicting wind power. The goal is to develop models that are efficient in the delivery of
accurate forecasts, especially in real-time applications where rapid judgment is crucial.
Researchers are currently tackling scalability difficulties with wind power forecasting systems to
render them more accurate and beneficial for broader adoption in renewable energy management
systems. Scalability issues are particularly challenging when dealing with large datasets and
intricate modeling techniques.
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 Basic Theory of Models Used

Advanced AI and ML algorithms as well as conventional statistical models are among the
array of models utilized in wind power forecasting research. For prediction purposes, statistical
models such as SVR, RBFNN, and GRNN use statistical analysis of past data together with
mathematical correlations. In wind speed and power data, these models frequently excel at
identifying linear or nonlinear trends. Conversely, AI and ML models like CNN, FFNN, and DL
architectures like LSTM networks use sophisticated algorithms to learn from data, extract
features, and provide predictions. To attain both accuracy and computing efficiency in wind
power forecasting applications, hybrid models that combine the characteristics of statistical and
AI/ML approaches are also widely used.

 Benchmark Models

Niu et al (2020) [65] have improved forecasting methods by introducing a new sequence-
to-sequence model that uses the Attention-based Gated Recurrent Unit (AGRU). By using GRU
block activations that are hidden, it embeds the responsibility of connecting several forecasting
processes. To further determine which input variables are most crucial, an attention mechanism
was created as a feature selection technique. Their results are compared with other benchmarks
for wind power forecasting to verify the efficacy of the AGRU model.

Zameer et al (2017) [66] have introduced the GP-based ensemble regressor for wind
power prediction. The actual power and the anticipated power produced by this model nearly
match. The outcomes show that in comparison to individual regresses, the ensemble regressor
performed admirably. Five distinct farms situated across Europe provided the data that was used
to test various models. Wind farms located around the globe may utilize the technique shown
here to forecast and train their wind generation.

 Feed Forward Neural Networks (FFNN)

Liu et al (2021) [67] have presented the wind speed forecasting system that uses the Data
Area Division (DAD) technique with the DL neural network model. Three modules make up the
system: predicting, preparing, and extraction modules. Good results for short-term wind speed
forecasts are shown by numerical simulation results. For short-term wind power forecasting in
the Hokkaido region, the system's prediction deviation is less than 6% year-round, according to
the examination of wind power impact indicators. This has significant practical implications.

Al-Janabi et al (2020) [68] have proposed a model for producing electricity from wind
termed multi-objectives renewable energy generation (MORE-G). There are five fundamental
phases to this concept. To produce the energy, another model known as DCapsNet, a multilayer
neural network, was created. The MORE-G is distinguished by its ability to reduce material
prices, upgrade the Ministry of Electricity's control, and handle one of the actual issues.
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 Elman Recurrent Neural Network (ERNN)

Liu et al (2018) [69] have made public a novel hybrid wind speed prediction model that
was created by combining the empirical wavelet transform, the Elman neural network, and the
long-short memory network. Within the suggested hybrid EWTLSTM-Elman model, the Elman
and LSTM neural networks are utilized to forecast the high-frequency and low-frequency
sublayers, respectively, while the EWT was utilized to break down the raw wind speed data into
many sub-layers. Excellent multi-step forecasting results are obtained using the suggested
framework.

Tian et al (2018) [70] have introduced a new multi-objective satin bowerbird optimizer
method and a new data preprocessing technique based on the hybrid Elman neural network
model and data preprocessing strategy. Multiple forecasting instances based on eight wind speed
datasets are presented to validate the system's forecasting efficacy. The findings show that the
supplied system has superior predicting accuracy and stability.

 Linear Neural Networks with Time Delay (LNNTD)

Yuan et al (2017) [71] have created a hybrid model that combines a fractionally
integrated moving average with a least squares SVM. Initially, the wind power series' long
memory properties were identified using the autocorrelation function analysis. The linear
components of the wind power series were then predicted using the autoregressive fractionally
integrated moving average model. Lastly, by combining the forecast outcomes, the wind power
prediction was generated. The findings show that the supplied hybrid model has a greater
accuracy when compared to other models.

Peng et al (2017) [72] have created a hybrid model to address the nonlinearity of wind
speed time series. This two-stage decomposition approach combines the Complementary
Ensemble Empirical Mode Decomposition with Adaptive Noise and Variational Mode
Decomposition. After that, an extreme learning machine was combined with an upgraded
AdaBoost-RT algorithm. The suggested model is contrasted with non-denoising techniques. The
study's findings suggest that the hybrid model that was suggested produces more accurate
forecasts.

Table 7 Research Gaps from Published Works

Author’s names and
citations

Methods used Advantages Disadvantages

Niu et al (2020) [65] Attention-based GRU, Feature
Selection

Better spatial information Hard to parallelize

Zameer et al (2017)
[66]

Genetic Programming-based
Ensemble Regressor

Admirable performance Dependency of
hyperparameters tuning

Liu et al (2021) [67] DAD Good short-term wind
forecasting results

Limited information

Al-Janabi et al
(2020) [68]

MORE-G model, DCapsNet Reduced material prices Potential scalability
challenges
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Liu et al (2018) [69] Empirical Wavelet Transform,
Elman NN, LSTM

Better multi-step
forecasting outcomes

Complexity of hybrid
model

 General Regression Neural Network (GRNN)

Naik et al (2018) [73] have announced the development of an effective, non-iterative
hybrid Kernel Ridge Regression and Empirical Mode Decomposition model for predicting wind
speed and power with a substantial degree of accuracy in the short term. In that order, the EMD-
KRR model was put to the test for three hours, ten minutes, one hour, and thirty minutes. Using
the wind power data from three actual wind farms, the performance measures of the provided
model validate its accuracy and efficacy in generating a forecast when compared to all other
prediction models.

Harrou et al (2019) [74] have embraced the decision tree bagging ensembles technique
for forecasting wind power. It can combine many techniques and lower the total error. Four
established prediction techniques have been compared to the wind power prediction performance
of bagged trees. The prediction quality of the investigated approaches is demonstrated using real
measurements taken from an actual wind turbine every 10 minutes. The bagged trees regression
technique achieved the highest prediction performance, according to the results.

 FFNN Parameters Optimization by Genetic Algorithms

Shahid et al (2021) [75] have announced that they have discovered an innovative way to
estimate wind power for seven wind farm datasets across Europe using genetic long short-term
memory. By making use of the genetic algorithms bioinspired architecture, it controls the
number of neurons and window size of LSTM layers. Comparing GLSTM to current methods,
the improvement in wind power estimates ranges from 6% to 30% on average.

Santamaría-Bonfil et al (2016) [55] have created a hybrid approach for wind speed
forecasting that is based on Support Vector Regression. Time series of univariate wind speed
were used to train this model. A genetic algorithm was used to adjust the parameters.
Additionally, the time series stationary transformation was assessed. The approach yielded more
accurate findings, according to the results.

 Particle Swarm Optimization-Based Neural Networks

Khosravi et al (2018) [76] have declared three kinds of ML algorithms to forecast wind
power, direction, and speed. A layered feed-forward neural network served as the basis for the
initial model. Radial basis function SVR is the second model. PSO optimization was used for the
third model ANFIS. The SVR-RBF model compares well with the other two models when
comparing the statistical indices for the actual and projected data.
 Concept of Single and Multiple Step-ahead Wind Power Forecasting

Mahmoud et al (2018) [77] have created a wind power-generating device called a self-
adaptive evolutionary extreme learning machine. The self-adaptive differential evolution
optimization approach was used in SAEELM to optimize the output weight matrix in a single
hidden layer extreme learning machine. A variety of case studies utilizing actual Australian wind
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farms have been compiled. Through comparison with other models, this strategy achieved a high
level of effectiveness.

Wang et al (2020) [78] have presented a novel hybrid Laguerre neural network and
singular spectrum analysis-based wind power forecasting technique. Initially, the wind power
series was examined using single-spectrum analysis. The Laguerre neural network was then
developed. The wind farm in Xinjiang, China, was the subject of an investigation of this
methodology. Results from prediction performance showed that the suggested model is more
accurate.

 Wavelet Transform

Nascimento et al (2023) [79] have presented a unique transformer-based DNN
architecture combined with wavelet transform for multivariate time series forecasting, utilizing
several meteorological data as input for wind speed predictions for the next six hours. Statistical
measures were used to assess the predicted performance results in addition to training and
making conclusions. Also, results demonstrated that predicted efficiency was improved by
combining the transformer model with wavelet decomposition.

 Data Used and Pre-processing

Zhang et al (2019) [80] have created a short-term wind speed prediction model based on
an online sequential outlier resilient extreme learning machine and hybrid mode decomposition
technique. HMD thoroughly dissected the wind speed throughout the data pre-processing phase.
The experiment findings demonstrate that this strategy was a successful means of wind speed
prediction. The crisscross algorithm was used to optimize the hidden layers and input weights.

8. Discussion and Key Issues

 Identifying relevant input variables is challenging. Too many can lead to overfitting,
while too few may cause underfitting, missing essential wind patterns.

 Increasing the number of turbines and regions raises computational load, which can cause
delays in real-time processing, reducing prediction effectiveness.

 Real-time decision-making needs fast processing and accurate predictions. AI must
balance prediction speed with accuracy, especially given wind volatility and market
fluctuations.

 High computational costs for AI models make them expensive, especially for smaller
operators, and can strain infrastructure, causing delays.

 Data quality and consistency are crucial for effective AI training. Inconsistent data can
lead to biased models and inaccurate forecasts, harming grid stability and market
performance.
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 AI models must remain adaptable to diverse wind environments. Over-specialized
models may require frequent retraining to handle evolving conditions.

9. Future Directions in Ai-Driven Wind Energy Integration

As the demand for clean, renewable energy sources like wind power grows, the future of AI-
driven wind energy integration lies in embracing emerging technologies that can further enhance
forecasting accuracy, grid adaptability, and overall efficiency. Several key technological
advancements—such as quantum computing, federated learning, and edge AI—are poised to
play a transformative role in overcoming the challenges of integrating wind energy into modern
grids. Furthermore, improving grid adaptability to accommodate high levels of renewable energy
is crucial to achieving a sustainable and resilient energy future.

i. Quantum Computing: Quantum algorithms can process data faster, improving
forecasting and optimization for wind energy. This could speed up decision-making,
enhance grid operations, and optimize market bidding strategies.

ii. Federated Learning: This allows wind farms to collaborate on forecasting models
without sharing sensitive data, improving accuracy and generalizing predictions across
regions.

iii. Edge AI: By processing data locally, edge AI allows real-time decision-making on wind
farms and grids, improving response times and operational efficiency, especially in
decentralized energy systems.

iv. Grid Adaptability: AI will help manage renewable energy fluctuations through dynamic
grid management, energy storage optimization, and demand response, ensuring stability
and efficiency as renewable energy sources like wind increase.

v. Digital Twins: Virtual models of wind farms and grids will simulate operations, helping
operators optimize strategies, predict maintenance needs, and improve grid management
before real-world implementation.

The future of AI-driven wind energy integration is promising, with advancements in quantum
computing, federated learning, and edge AI. These technologies will improve wind power
forecasts, enhance grid adaptability, and support real-time decision-making. As AI evolves, it
will optimize energy storage, grid operations, and renewable integration, accelerating the
transition to a sustainable, renewable-powered future.

10. Limitations of Literature Review

The review emphasizes short-term forecasting, with limited focus on medium- and long-term models
essential for strategic planning.
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i. Emerging and niche methodologies developed in recent years may not be
comprehensively covered.

ii. A lack of standardized evaluation metrics across studies complicates direct comparison of
forecasting models.

iii. Geographical bias exists, as most studies focus on specific regions, limiting global
generalizability.

iv. Practical scalability and real-world deployment of the reviewed models are not deeply
analyzed.

v. Computational efficiency, including training times and resource demands, is
insufficiently addressed.

vi. The socio-economic impacts and cost-benefit analyses of forecasting models are not
discussed.

vii. Data constraints, such as challenges in handling noisy or incomplete data, are overlooked.
viii. Advances in emerging technologies like quantum computing and optimization are

excluded.
ix. Integration of wind forecasting with other renewable energy sources is not explored.

These limitations highlight potential areas for enhancing future research in wind power forecasting.

11. Conclusion

This review comprehensively examines the state-of-the-art techniques in wind power forecasting,
highlighting the evolution and application of statistical, machine learning (ML), and artificial
intelligence (AI) models. Hybrid approaches combining these methodologies demonstrate
significant promise in improving prediction accuracy and addressing the inherent complexities of
wind data. The discussion underscores the importance of optimizing input variables, improving
preprocessing techniques, and enhancing model scalability for real-world applications. Despite
notable advancements, challenges remain, including the need for standardized evaluation metrics,
better handling of large and noisy datasets, and addressing scalability for broader adoption.
Future research should focus on integrating forecasting models with other renewable energy
sources, exploring the socio-economic impacts of wind forecasting, and leveraging emerging
technologies like quantum computing. The insights presented in this review provide a foundation
for developing more robust and efficient forecasting systems, contributing to the broader goal of
sustainable energy management and optimizing the utilization of wind resources. Wind power
predictions are critical for the integration of renewable energy sources into the electrical grid and
ensuring grid stability. However, wind power's erratic and intermittent nature presents significant
forecasting challenges. Traditional methods relying on statistical analysis and meteorological
models often fall short in delivering accurate predictions. AI techniques, including ML and deep
learning (DL) algorithms, have shown potential for improving the accuracy of wind power
projections across different time scales. However, limitations in data availability, technological
capabilities, and the complexity of wind turbine systems pose persistent difficulties. Factors such
as demand pattern fluctuations, the influence of distributed energy resources (DER), data
accuracy and accessibility, and policy and regulatory ambiguities further complicate load
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forecasting within the current electrical system. Moreover, price forecasters in the global
wholesale power market face challenges such as the influence of renewable energy sources,
market structure, data restrictions, market design, and regulations. Integration with grid
operations, data unpredictability, variability, intermittency, and the need for precise geographical
and temporal forecasts are critical aspects influencing wind power forecasting (WPF). Errors
inherent in statistical techniques or meteorological models also impact the precision of wind
power projections. In conclusion, addressing these multifaceted challenges requires continued
innovation, interdisciplinary collaboration, and investment in advanced forecasting technologies.
By doing so, the field can achieve more accurate, scalable, and actionable wind power forecasts,
thereby supporting the transition to a more sustainable and resilient energy future.
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