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ABSTRACT
The partition optimization and option of renewable energy source for specific place are basic problems 

which include multiple objectives, such as cost, benefit, and adjustable performance, etc. Particularly, partition 
optimization is a specific optimal design under the constraint condition of the summation of the proportion 
of each component being 100%, i.e., a “mixture design” problem in principle. In this paper, the combination of 
probabilistic multi-objective optimization (PMOO) with uniform design for mixture (UDM) is employed to solve 
the problems of partition optimization and the option of renewable energy source for specific place. In the study, 
PMOO is used to converse the multi-objective optimization problem (MOO) into a mono-objective one, and UDM 
with discretization treatment is used to provide a greatly simplified assessment with a set of homogeneous sam-
pling points in the optimization design with the constraint condition of the summation of total partition ratios 
being 100% specifically. In the optimization of partition ratios of a hydroelectricity power system, the total esti-
mated expenditure is minimized, and the annual average power generation of three hydropower stations is maxi-
mized in the system. It gives the rounding-off optimum partitions of the three hydropower stations as 66 kW, 55 
kW and 109 kW under the condition of a total installed capacity of 230 kW, respectively; the total cost and annual 
power generation are 4.3251 billion yuan and 127.7356 billion degrees correspondingly. Subsequently, the study 
on the selection of renewable energy source in specific place in India results in solar energy as the appropriate 
option.
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1. Introduction

Distribution of installed capacity of hydroelectric-
ity power stations is a typical optimization problem 
with multiple objectives (MOO) in the optimal op-
tion. In a hydropower station system, not only is the 
investment of a system concerned, but also the power 
generation, the adjustable performance (power genera-
tion quality), the comprehensive utilization benefit of 
hydropower resources in a system, etc., are all involved, 
and the benefits of individual power stations need to be 
considered as well [1]. Therefore, the proper distribution 
of installed capacity is undoubtedly a multi-objective 
optimization problem. 

On the other hand, the increase in populations 
and industrialization aggravates the energy consuming 
in the world; it experiences a tremendous rise in energy 
demand due to growing economies and modernization 
[2]. As a result, some countries or regions are even faced 
with an energy crisis due to the contradiction between 
their demands and the supply of fossil energy resources 
[3,4]. Therefore, the exploration of renewable energy (RE) 
has been increasing rapidly worldwide. Globally, there 
are various renewable energy resources available in 
different regions; therefore, an appropriate selection 
and utilization of these renewable energy sources are 
quite important for an explorer to achieve efficient and 
reasonable application. Unavoidably, the appropriate 
option of these renewable energy sources involves the 
comprehensive assessment and comparison of each RE 
resource in financial, technical, infrastructure manage-
ment and maintenance, land requirements, and socio-
economic aspects, etc. [4]. Therefore, it is a simultaneous 
optimization problem with multiple objectives. These 
multiple objectives also involve uncertainty and con-
flicting criteria. Inevitably, researchers have to employ 
proper approaches to multi-objective optimization 
(MOO) to address the matter.

Commonly, in traditional approaches (in fact, al-
gorithms solely) of MOO, it is difficult to find an optimal 
solution for the MOO problem; it could only yield a so-
called non-inferior solution or satisfactory solution 
instead of an actual optimal solution as a whole, such as 
those of the Pareto front, etc. [5,6].

Although there have been many algorithms to find 
satisfactory solutions, they are all problematic. Roughly, 
the algorithms can be divided into two categories. One 
is hierarchical analysis based on vector optimization 
theory and utility theory. The non-inferior solution set 
is obtained in a certain way first, and then the utility 
function is constructed or the scheme is optimized by 
weighted average. The other algorithm is a multi-stage, 
multi-level and even multi-objective fuzzy optimization 
approach. It selects the satisfactory solution from the 
non-inferior solution set according to the minimum Eu-
clidean weighted distance. Both of the above algorithms 
are based on the comparison and screening of a limited 
number of schemes in the non-inferior solution set of 
intermediate problems, and the premise is to form a 
non-inferior solution set containing a limited number 
of schemes first. In addition, it contains unknown pa-
rameters, such as weight factors, normalized factors, 
“virtual solution”, etc. 

A more serious problem is that it adopts the op-
eration mode of “additive algorithm”, which actually 
has the meaning of “union” from the perspective of set 
theory. However, the essence of MOO is to conduct the 
optimization of multiple objectives at the same time, 
which should belong to the mode of “intersection” from 
the perspective of set theory. Therefore, the actual case 
is that the past algorithms could not reflect the scien-
tific connotation of the simultaneity of MOO [5–8]. A Pa-
reto solution, also known as a non-inferior solution or 
an efficient solution, is a concept of a solution in multi-
objective optimization. Pareto optimality was proposed 
by the Italian economist Pareto in 1879 and thereafter. 
Pareto solutions are generally not unique. The key to 
solving such multi-objective optimization problems lies 
in selecting the most satisfactory result according to 
some rational criterion. Subsequently, numerous multi-
objective optimization algorithms have been developed 
to obtain the Pareto front instead of the actual optimal 
solution [9–18]. What kind of results can these algorithms 
provide? The analysis shows that the results they can 
provide include: 1. Pareto optimal set: a collection of 
non-dominated solutions, each representing a trade-
off; 2. Pareto front: a visualization of these solutions’ 
performance in the objective space, forming a curve (or 
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surface). For example: (1) In a portfolio optimization, 
the Pareto front may illustrate the trade-off between 
“risk vs. return”; (2) In engineering design, it may show 
the trade-off between “strength vs. weight”. The practi-
cal significance of these algorithms is that they offer “all 
possible trade-offs” for decision-makers to choose from 
actual needs instead of a “single correct answer”. Al-
though these methods have been applied in many fields 
to varying degrees, they have inherent defects.

This situation indicates the necessity of an ap-
propriate approach that could reveal the simultaneity 
of optimization with multiple objectives actually. Im-
proper selection and utilization of approaches for MOO 
often result in invaluable or misleading consequences.

Recently, probabilistic multi-objective optimiza-
tion (PMOO) was proposed to deal with the optimiza-
tion problem with multiple objectives concurrently in 
a system [5,6], which aims to reveal the intrinsic simulta-
neity of the multiple objectives in optimization within 
the system. Besides, the optimization of a system being 
the whole / integral optimization of the system is taken 
into consideration as the fundamental view. 

The fundamental thought of PMOO is based on the 
following considerations [5,6]. Multi-objective optimiza-
tion refers to the situation where the object (system) 
under study contains multiple objectives that cannot be 
separated and must be optimized simultaneously. This 
is its completeness. For example, a material used in air-
craft manufacturing needs to be strong and durable, as 
well as lightweight and resistant to environments. Many 
material properties (objectives) are involved, such as 
strength, toughness, lightweight, and environmental 
resistance, which are inseparable indicators within 
the material and cannot be isolated. In other words, 
certain constraints must be considered to achieve high 
strength and lightweight simultaneously in a material, 
because high strength and lightweight (low density) are 
conflicting indicators which coexist within the material; 
they are mutually restricting each other and being in-
separable.

Indeed, in multi-objective optimization problems, 
these properties need to be optimized simultaneously 
to enable the system as a whole to function/work prop-
erly! These properties are interrelated and constrained, 

so it is impossible to adjust one without affecting the 
others! The system’s environmental adaptability is also 
a crucial performance metric for its reliability and suc-
cess. Therefore, from a systems theory perspective, a 
multi-objective optimization problem is essentially an 
optimization of the entire system. Each objective is an 
organic part of the system.

Addressing the issue of optimizing multiple objec-
tives simultaneously involves treating the system as a 
whole for optimization, i.e., putting the entire system in 
the best possible state, with its various parts working 
together and uniting under the banner of “overall opti-
mization”.

Only when all parts (objectives) of the system are 
coordinated can the system reach an integrated opti-
mization and realize the overall function of the system. 
Therefore, according to systems theory, the optimiza-
tion of the system should be: (1) overall optimization; 
(2) hierarchical optimization at each stage; (3) collabo-
ration among all parties. 

Additionally, from the perspective of systems the-
ory, “the whole system does not equal the simple sum 
of its components” but rather “the whole is greater than 
the sum of its parts”.

However, previous (so-called) multi-objective 
optimization algorithms, such as linear weighting or 
“ε-constraint”, which treat “weighted summation” or 
“selecting one of the k objectives” as the optimization 
goal while converting the remaining (k-1) objectives 
into constraints, they all diverge from the essence of 
“simultaneous optimization of multiple objectives” and 
deviate from the intrinsic nature of “overall system 
optimization”. Moreover, the selection of weight factors 
and normalization factors for each attribute in the “lin-
ear weighting” method also poses issues.

Given that the essence of “multi-objective optimi-
zation” means “simultaneous optimization of multiple 
objectives”, it is fundamentally “overall system optimi-
zation”. Therefore, it is necessary to find the “intersec-
tion” between objectives, making them coordinate with 
each other to achieve optimal functionality of the entire 
system.

The concept of “intersection” comes from set the-
ory, involving two sets A and B, where the intersection 
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is the set consisting of all elements that belong to both 
A and B, denoted as A·B or A∩B. In probability theory, 
the probability P(A∩B) of two independent events oc-
curring simultaneously equals P(A)·P(B), i.e., P(A∩B) =  
P(A)·P(B), known as the joint probability of the two 
independent events A and B. Additionally, from the 
perspective of systems theory, systems can take var-
ious forms, and each component within a system can 
also have diverse forms. Materials in multi-objective 
material selection have the form of an entity system, 
while their properties such as elastic modulus, tensile 
strength, and elongation more closely resemble con-
ceptual systems. For problems involving simultaneous 
optimization of multiple objectives, Derringer et al. and 
Jorge et al. transform each objective into its satisfaction 
value and then combine all satisfaction values using 
their geometric mean to obtain a total satisfaction value 
representing the overall evaluation of this combination 
[19,20]. However, from a probabilistic standpoint, this 
patchwork approach fundamentally does not align with 
the essence of optimizing multiple objectives simul-
taneously [5,6]. Therefore, it is necessary to construct a 
methodological framework for simultaneous optimi-
zation of multiple objectives from the perspectives of 
systems theory and probability theory rationally, which 
leads to the emergence of probability-based multi-ob-
jective optimization methods.

In probability theory, the “product” of the proba-
bilities of two individual events reflects the “simultane-
ous occurrence” of these events, and the “intersection” 
of two individual subsets reveals the “simultaneous 
occurrence” in both subsets in set theory. Therefore, if 
the probability theory method is adopted to conduct 
the issue of simultaneous optimization of multiple 
objectives, the subsequent problem is to quantify the 
attribute response of all objectives (attributes) of alter-
native candidates. So, in PMOO, the preference degree 
of an attribute in the optimization was reflected by a 
novel idea called “preferable probability” [2,3]. Moreover, 
all objectives (attributes) of candidate schemes in the 
optimization are grouped into either beneficial kinds 
of attributes or unbeneficial kinds of attributes prelim-
inarily. Furthermore, a quantitative evaluation of each 
attribute to its corresponding candidate scheme is per-

formed by a new index called partial preferable proba-
bility initially [5,6]. 

Thus, the product of all its partial preferable prob-
abilities of a candidate scheme leads to a total prefera-
ble probability, which is the unique index of this candi-
date scheme. Finally, the total preferable probability of 
each scheme is its uniquely decisive representative to 
compete in the optimization process undoubtedly [5,6]. 

Obviously, PMOO is promised to perform the con-
current optimization problem of multiple objectives as 
a whole, so as to get effective and valuable consequenc-
es. The assessments of PMOO are introduced as follows 
briefly.

For beneficial kinds of objectives [5,6], the partial 
preferable probability Pij is evaluated with Equation (1), 
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Finally, the total preferable probability Pi of the i-th 
alternative scheme is [5,6],
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In Equation (1) through Equation (3), χij is the 
performance utility index of the j-th objective of the 
i-th candidate; n is the total number of alternatives; 

m reflects the total number of objective; jχ indicates 
the mean value of the utility index of the j-th objective 
within the involved candidates; χjmin and χjmax are the 
minimum and maximum values of the performance 
utility index involved in j-th objectives, respectively; γj 
and ηj indicate the normalization factors of the j-th util-
ity index  χij in cases of beneficial kinds and unbeneficial 
kinds, respectively [2,3]. In addition, the probabilistic 
robust design of the production process and product 
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was developed on the basis of the viewpoint of systems 
theory [21,22].

In fact, there exist distinct differences between 
PMOO and traditional approaches for MOO problems. 
The main differences are reflected in the fact that 
PMOO contains both the viewpoint of systems theory 
and mathematical algorithms. From the point of view of 
systems theory, “the optimum point of the optimization 
problem of multiple objectives” is the “optimal point 
of the system”, and the latter can be obtained by using 
probability theory. However, traditional approaches 
for MOO problems lack any viewpoint for the optimum 
point but only algorithms, which lead to the conse-
quence that the optimum point of the “optimization 
problem with multiple objectives” is not defined. 

Besides, partition optimization is a specific opti-
mal design problem, which has a typical characteristic 
of the ratios of input partition variables usually being 
restrained by common constraint conditions, xi0 ≥ 0, i = 

1, 2, …, s, and ∑ =
=

s

i ix
10 0 1 [23], in which xi0 reflects the i-th 

input partition variable and s indicates the number of 
input partition variables. Such kind of problem with the 
above constraints for input variables is called “mixture 
design” in the chemical industry, material manufactur-
ing industry and design of food formulas [23]. Therefore, 
the uniform design for the mixture problem (UDM) 
proposed by Fang et al. could be employed to deal with 
the problem of partition optimization [23]; it provides a 
set of homogeneous sampling points in the mixture de-
sign under the above constraint conditions. In fact, the 
uniformly distributed sampling points can be used to 
conduct the subsequent data processing in the optimi-
zation process by means of discretization especially.

In this paper, the combination of PMOO with UDM 
is used to solve the problem of partition optimization of 
hydroelectricity power system in order to get an appro-
priate option first. The total calculation expenditure of 
a hydroelectricity power system and its annual average 
power generation are taken as the dual objectives to get 
global optimization with proper partition distributions 
of installed capacity of three hydropower stations. Sub-
sequently, appropriate selection of renewable energy 
source for specific place is conducted in terms of proba-
bilistic multi-objective optimization.

2. Materials and Methods

2.1. Uniform Design for Mixture Design 
with Three Input Variables

Uniform Design for Mixture Design (UDM) was 
proposed by Fang et al. [21], it provides a homogeneous 
sampling points in mixture design under constraint 

conditions of xi0 ≥ 0, i = 1, 2, …, s, and ∑ =
=

s

i ix
10 0 1  [23]. In 

detail, Fang et al. established a procedure to deduce a 
specific table UMr(rs) to spread the sampling points in 
the input variable – space accordingly [23].

As to a UDM with three input variable ratios (s = 
3), i.e., x10, x20, x30, the number of sampling points r = 19 
can be employed in our treatment [5]; the corresponding 
uniform design table U*r(rt) or Ur(rt) and its usage table 
can be chosen accordingly [23,24]. Under such conditions, 
the number of columns of the usage table could be set 
as s ‒ 1. 

While, the elements in the original uniform design 
table U*r(rt) or Ur(rt) are marked by {qik} [23,24]. Accord-
ingly, the following procedures are formulated [23,24].

(I) Construction of a novel element cki 
As to each i, a novel element cki is built by using 

the following formula [23,24],

)2/()12( rqc kiki −=                       (4)

(II) Construction of uniform sampling points 
for the mixtures, yki0 

Following formula is employed to complete the 
construction [23,24],
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Thus, {xki0} is deduced, which could be employed 
to build the corresponding uniform design table UMr(rs) 
of the mixture under the conditions of specific n and s. 

Based on the uniform design table U*19(197) of 
Fang et al. [23,24], a uniform test table UM19(193) with mix-
tures can be built, which is shown in Table 1. Besides, 
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here we have s = 3 for three input variables, r = 19 for 
the number of sampling points, so it derives the follow-
ing expressions from the above rules, 
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Table 1. Uniform test table UM19(193) with mixtures based on 
uniform design table U*19(197).

No. q10 q20 c1 c2 x10 x20 x30

1 1 9 0.0263 0.4474 0.8378 0.0896 0.0726

2 2 18 0.0789 0.9211 0.7190 0.0222 0.2588

3 3 7 0.1316 0.3421 0.6373 0.2386 0.1241

4 4 16 0.1842 0.8158 0.5708 0.0791 0.3501

5 5 5 0.2368 0.2368 0.5133 0.3714 0.1153

6 6 14 0.2895 0.7105 0.4620 0.1557 0.3823

7 7 3 0.3421 0.1316 0.4151 0.5079 0.0770

8 8 12 0.3947 0.6053 0.3717 0.2480 0.3803

9 9 1 0.4474 0.0263 0.3311 0.6513 0.0176

10 10 10 0.5000 0.5000 0.2929 0.3536 0.3536

11 11 19 0.5526 0.9737 0.2566 0.0196 0.7238

12 12 8 0.6053 0.3947 0.2220 0.4709 0.3071

13 13 17 0.6579 0.8684 0.1889 0.1067 0.7044

14 14 6 0.7105 0.2895 0.1571 0.5989 0.2440

15 15 15 0.7636 0.7632 0.1264 0.2069 0.6667

16 16 4 0.8158 0.1842 0.0968 0.7368 0.1664

17 17 13 0.8684 0.6579 0.0681 0.3188 0.6131

18 18 2 0.9211 0.0789 0.0403 0.8839 0.0758

19 19 11 0.9737 0.5526 0.0132 0.4414 0.5453

2.2. Combination of PMOO with UDM

In light of uniform design for mixture design 
(UDM), the assessments of continuous functions of ob-
jectives within their valid domain can be replaced by 
the evaluations of the limited number of values of the 
corresponding objectives at the typical sampling points, 
which greatly simplifies assessments.

In order to perform assessments of PMOO, the 
values of objective functions at every sampling point 
can be conducted first accordingly. Subsequently, the 
corresponding result of partial preferable probability 
for each objective at every sampling point, and the total 
preferable probability at every sampling point can be 
conducted. 

All these procedures form the Combination of 
PMOO with UDM, which makes it possible for PMOO 
evaluations at the typical sampling points of UDM.

The sampling points provided in Table 1 are for 
the case of partition optimization with three input parti-
tion variables only, while for other numbers of input vari-
ables it can be conducted according to Fang et al. [23,24]. 
Two application examples are provided in this section. 

3. Results

3.1. Application of Combination of PMOO 
with UDM in Partition Optimization of 
Hydroelectricity Power System 

In the optimization problem of distributions of 
installed capacity of the hydropower system, it often 
involves the total investment, the system power gen-
eration, power generation quality (adjustable perfor-
mance), and the comprehensive utilization benefit of 
hydropower resources, etc. In this section, the alloca-
tion of installed capacity of hydropower stations in a 
system is optimized with the total expenditure and the 
average power generation for many years as dual objec-
tives of the system.

Li, Shang and Huang raised a partition problem of 
three hydropower stations in a system power genera-
tion [1], which involves minimizing total estimated ex-
penditure C, of the system and maximizing the annual 
average power generation E in China. Table 2 shows 
the relationship among the installed capacity y of three 
hydropower stations, the estimated expenditure C and 
annual average power generation E in the power sys-
tem from Li, Shang and Huang [1]. 

Table 2. Data of relationship among the installed capacity of 
3 hydropower stations, estimated expenditure and average 
annual power generation [1].

No.
Installed 
Capacity y 
(kW)

Cost C 
(billion 
yuan)

Annual Power 
Generation E 
(billion degree)

Station 1

y1 C1 E1

60 1.5780 32.0

70 1.5890 36.5

80 1.6050 41.1

90 1.6117 43.6

100 1.6335 45.5
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No.
Installed 
Capacity y 
(kW)

Cost C 
(billion 
yuan)

Annual Power 
Generation E 
(billion degree)

Station 2

y2 C2 E2

40 1.5200 27.0

50 1.5460 32.6

60 1.5680 37.7

70 1.5910 42.1

80 1.6200 45.4

Station 3

y3 C3 E3

80 1.5800 41.9

90 1.6120 48.5

100 1.6520 53.0

110 1.6900 57.09

120 1.7280 61.0

The restraint condition of the hydropower system 
is that the total installed capacity of the hydropower 
stations is 230 kW in the system [1], i.e., y1 + y2 + y3 = 230 
kW, and the ranges of installed capacity of each power 
station were y1 ∊ [60, 100] in kW, y2 ∊ [40, 80] in kW 
and y3 ∊ [80, 120] in kW, respectively [1]; here yi indi-
cates the installed capacity of the i-th each power sta-
tion, i = 1, 2, 3.

Furthermore, it is stated that this optimization 
problem is to take the minimizing total estimated ex-
penditure C of the system and maximizing the annual 
average power generation E as dual objectives under 
the restraint conditions of total installed capacity of the 
three hydropower stations in the system being 230 kW 
and the corresponding ranges of installed capacity of 
each power station.

From the data in Table 2, the following regressed 
relationships can be obtained,

9827.0,551.1107109 2
1

52
1

6
1 =+×−×= −− RyyC     (8)

 998.0,869.191753.10052.0 2
1

2
11 =−+−= RyyE     (9)

 9983.0,439.10019.0105 2
2

2
2

6
2 =++×= − RyyC    (10)

9998.0,691.39173.00038.0 2
2

2
22 =−+−= RyyE   (11)

 9994.0,348.10023.0107 2
3

2
3

6
3 =++×= − RyyC     (12)

 998.0,022.35295.10041.0 2
3

2
33 =−+−= RyyE   (13)

The optimum problem can be expressed as an 
optimization issue with dual objectives in the following 

formulae,

321min CCCC ++=                       (14)

321max EEEE ++=                       (15)

s.t.: y1 + y2 + y3 = 230 kW               (16)

s.t.: kWykW 10060 1 ≤≤ , kWykW 8040 2 ≤≤ , 
kWykW 12080 3 ≤≤  

(17)

Obviously, this problem is an optimization issue 
of dual objectives with mixture design [5,23]. Since the 
objective functions C and E are continuous functions in 
the independent partition variable space consisting of 
y1, y2 and y3 now, an effective treatment is to deal with 
it by using a discretizing algorithm in the indepen-
dent variable space with a certain number of sampling 
points [5,23].

Subsequently, 19 uniformly distributed sampling 
points are necessary to be employed to conduct this 
mixture design issue in 3-D space fundamentally in 
light of the study on the number of sampling points 
[5,21,23], which is shown in Table 3.

Table 3. 19 uniformly distributed sampling points for this 
mixture design issue.

No.
Position of Sampling Point

y1 (kW) y2 (kW) y3 (kW)

1 97.76162 45.56711 86.67120

2 92.79553 42.74579 94.45861

3 89.37638 51.79781 88.82575

4 86.59717 45.12443 98.27834

5 84.19402 57.34951 88.45641

6 82.04610 48.33113 99.62271

7 80.08608 63.05918 86.85468

8 78.27187 52.18931 99.53876

9 76.57509 69.05245 84.37240

10 74.97551 56.60313 98.42130

11 73.45814 42.63626 113.90550

12 72.01145 61.50979 96.47870

13 70.62641 46.28120 113.09230

14 69.29575 66.86399 93.84019

15 68.01353 50.47046 111.51590

16 66.77481 72.63104 90.59409

17 65.57544 55.15001 109.27450

18 64.41191 78.78325 86.80478

19 63.28116 60.27850 106.44030

Moreover, the values of functions C and E at these 
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19 sampling points are evaluated, which are shown in 
Table 4. 

Table 4. Values of functions C and E at the 19 sampling points.

No.
Value of Function

C (billion yuan) E (billion degree)

1 4.367772 121.9677

2 4.344959 123.7122

3 4.366799 124.9223

4 4.337318 125.5252

5 4.373035 126.0890

6 4.337090 126.6202

7 4.383253 126.4722

8 4.341254 127.3559

9 4.396629 126.2229

10 4.348747 127.7925

11 4.300760 126.2080

12 4.359072 127.9096

13 4.306410 126.8172

14 4.371971 127.6549

15 4.314466 127.3428

16 4.387316 126.9598

17 4.324759 127.7117

18 4.405048 125.7471

19 4.337202 127.8438

The assessments of partial preferable probabili-
ties of functions C and E, and the total preferable prob-
abilities at 19 sampling points, as well as ranking, are 
shown in Table 5. In the assessments, the regressed 
relationships are employed.

Table 5 shows that the highest total preferable 
probability appears at the 17th sampling point, which 
can be selected as the optimized status. The correspond-
ing partition variables y1*, y2* and y3*, are 65.57544 kW, 
55.15001 kW and 109.27450 kW, respectively. The total 
cost C* and annual power generation E* are 4.324759 
billion yuan and 127.7117 billion degrees correspond-
ingly. The rounding-off values are, y1’ = 66 kW, y2’ = 55 
kW and y3’ = 109 kW, respectively; the corresponding 
total cost C’ and annual power generation E’, are 4.3251 
billion yuan and 127.7356 billion degrees individually. 

These results are superior to those given by Li, 
Shang and Huang with their fuzzy multi-objective op-
timization approach [1], i.e., y1”, y2” and y3”, are 80 kW, 
60 kW and 90 kW, respectively. Their total cost C” and 
annual power generation E”, are 4.785 billion yuan and 

127.3 billion degrees correspondingly. Obviously, the 
total cost C” of Li, Shang and Huang is greater than C’ of 
our approach, and their annual power generation E” is 
lower than ours.

Table 5. Assessment of partial preferable probabilities of 
functions C and E and total preferable probabilities at the 19 
sampling points, as well as ranking.

No.
Partial Preferable Proba-
bility

Total Preferable 
Probability Rank

PC PE Pt × 103

1 0.0525 0.0508 2.6645 19

2 0.0527 0.0515 2.7169 18

3 0.0525 0.0520 2.7297 16

4 0.0528 0.0523 2.7616 11

5 0.0524 0.0525 2.7512 14

6 0.0528 0.0527 2.7859 10

7 0.0523 0.0527 2.7530 13

8 0.0528 0.0530 2.7994 8

9 0.0521 0.0526 2.7390 15

10 0.0527 0.0532 2.8041 5

11 0.0533 0.0526 2.8000 6

12 0.0526 0.0533 2.8000 7

13 0.0532 0.0528 2.8099 4

14 0.0524 0.0532 2.7860 9

15 0.0531 0.0530 2.8164 2

16 0.0522 0.0529 2.7610 12

17 0.0530 0.0532 2.8179 1

18 0.0520 0.0524 2.7233 17

19 0.0528 0.0532 2.8127 3

3.2. Application of Probability-Based 
Multi-Objectives Optimization in Ap-
propriate Option of Renewable Energy 
Source 

In this section, the example for optimal renewable 
energy source of Husain et al. is reanalyzed with PMOO. 
Husain et al. once raised the optimal renewable energy 
source in India [4]. It involves the comparative option 
of hydropower, solar energy, wind energy and biomass 
energy, while the assessed criteria include financial 
response, technical maturity and efficiency, environ-
mental effect, and social benefit, etc. Furthermore, they 
gathered data for each kind of RE resource [4], which is 
cited in Table 6 here for our restudy. Besides, the types 
of the objectives (O1 through O10) are indicated clearly.
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Distinctly, the assessment of this issue can be 
done easily by using the approach of probability-based 
multi-objectives optimization (PMOO). The evaluated 
results with rank are presented in Table 7. The rank-
ing is conducted with the total preferable probability 
of each alternative candidate from higher to lower. It 
reveals that solar energy in the concerned area is the 
best selection, which has the highest total preferable 
probability in the optimal comparison. Undoubtedly, 
as to the optimal assessment of other places, their ap-
propriate criteria (objectives) and their roles might be 
of course concerned. Other applications of PMOO show 
bright prospects as well, such as utilizations in portfo-
lio investment, shortest path problems with multiple 
objectives, and options of thermofluids, etc. [25–29].

Table 7. Evaluated results of this issue.

Type of 
RE

Partial Preferable Probability
PO1 PO2 PO3 PO4 PO5 PO6

Solar 0.3600 0.5014 0.3066 0.1009 0.1073 0.2965
Wind 0.2724 0.2950 0.2972 0.1606 0.1864 0.3533
Hydro 0.1181 0.1058 0.1792 0.3515 0.3220 0.3333
Biomass 0.2495 0.0978 0.2170 0.3869 0.3842 0.0169

Continue
Type of 
RE

Partial Preferable Probability Total
Rank

PO7 PO8 PO9 PO10 Pi´106

Solar 0.3928 0.5724 0.2500 0.2808 2.8063 1
Wind 0.2058 0.1118 0.2500 0.2557 0.3718 2
Hydro 0.0094 0.1776 0.3125 0.2183 0.0096 4
Biomass 0.3920 0.1382 0.1875 0.2452 0.0331 3

4. Discussion

Since the total installed capacity of the hydropow-
er stations in a power system in general is limited and 
fixed, i.e., the ratio of input partition variable is usually 
restrained by the common constraint condition of the 
summation of the proportion of each component being 

1 (∑ =
=

s

i ix
10 0 1 , xi0 ≥ 0, i = 1, 2, …, s), which is a typical 

“mixture design” problem, therefore the combination 
of probabilistic multi-objective optimization (PMOO) 
with uniform design for mixture (UDM) is proper to be 
used to solve problems of such partition optimization 
undoubtedly. The consequences of the application ex-
ample confirm the validity of the approach.

5. Conclusions

The above study indicates that the combination of 
probabilistic multi-objective optimization with mixture 
design can be successfully used to conduct partition op-
timization problems; the probabilistic multi-objective 
optimization is used to convert optimization problems 
with multiple objectives into a mono-objective one, and 
the discretization is conducted by using uniform design 
with mixture to provide a set of homogeneous sampling 
points in optimization design.

The evaluated results for the appropriate option 
of renewable energy resources reveal that solar energy 
in the specific area is the best selection. The optimal as-

Table 6. Gathered data for each kind of RE resource.

Criterion
Total Installed Cost, $ 
kW–1, O1

O&M Cost, $ kW–1 y–1, 
O2

LCOE, $ kWh–1, O3 Efficiency, %, O4 Capacity Factor, %, O5

Type of Criterion Non-Beneficial Non-Beneficial Non-Beneficial Beneficial Beneficial

Solar 596 9.000 0.038 22.00 19

Wind 1038 28.000 0.040 35.00 33

Hydro 1817 45.425 0.065 76.61 57

Biomass 1154 46.160 0.057 84.33 68

Continue

Criterion
GHG Emission, g CO2 
kWh–1, O6

Land Requirement, 
m2 kW–1, O7

Job Creation, Job-years 
GWh–1, O8

Technical Maturity, 
1–5 Score, O9

Social Acceptance, 1–5 
Score, O10

Type of Criterion Non-Beneficial Non-Beneficial Beneficial Beneficial Beneficial

Solar 48 12 0.870 4 4.58

Wind 11 250 0.170 4 4.17

Hydro 24 500 0.270 5 3.56

Biomass 230 13 0.210 3 4.00
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sessment and selection of other places might concern 
their actual data of criteria exactly. More exploration 
of probabilistic multi-objective optimization in broad 
fields is still open and in need.
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