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ABSTRACT
Climate change trends and the ongoing environmental crisis are anticipated to signiϐicantly affect crop produc‑

tion, particularly rice, which is highly sensitive to these changes. This study explores adaptive strategies for ensuring
long‑term food security through agri‑environmental farm management practices, focusing on a polyculture rice pro‑
duction model (POLY), which emphasizes crop diversiϐication, land races, resource management, and environmental
stewardship. We compare the POLYmodel with local organic (ORG) and conventional (CV) models in northern Italy’s
western Po Plain, particularly during the extreme climatic event of 2022 and the preceding ϐive years. Although POLY
andORG farms exhibited lower average rice yields (3.9 and 4.3Mg/ha, respectively) compared to CV (6.7Mg/ha), they
demonstrated better resilience to the 2022 climate anomaly. POLY farms achieved yield increases of 21–22% for the
top performers, while ORG farms saw a 20% increase, contrasting with a 10% decrease in CV yields. Yield variability
was higher in POLY and ORG farms due to cultivar diversity, providing insurance against climatic unpredictability. Re‑
gression analysis revealed a signiϐicant correlation between total annual precipitation and CV yields, whereas POLY
and ORG yields showed less sensitivity to climate ϐluctuations. Economically, POLY farms outperformed in efϐiciency,
indicating a viable model for addressing agri‑environmental challenges without necessarily increasing land produc‑
tivity. This study highlights the importance of integrating such models into comprehensive strategies to mitigate the
interconnected crises of environment, climate, and food supply.
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1. Introduction
The most recent climate change scenarios devel‑

oped by the Intergovernmental Panel on Climate Change
(IPCC) project an increase in global temperatures from
2.5 to 4.5 °C by the year 2100 [1]. Climate change cur‑
rent and potential impacts on crop production are deeply
evidenced [2–7]. The Intergovernmental Panel on Climate
Change projected the loss of 10% of currently suitable
area for major crops on a global scale by 2050 due to fu‑
ture climate unsuitability, under the high‑emissions sce‑
nario [1]. This should be coupled to the rising risk of si‑
multaneous yield losses due to climate extremes across
major crop‑producing regions [8]. Such impacts are mul‑
tiplied when considering the projected increase of global
population to 9.7 billion by 2050, with consequent rise of
world food supply demand [9]. This poses severe threats
to food security. Rice, with wheat and maize, is one of the
major crops contributing to global food security [10]. In Eu‑
rope, it is the 6th most produced cereal; besides its eco‑
nomic load, its cultivation is here associated to important
social‑cultural [11] and ecological values [12]. Italy is the
ϐirst European rice‑producer, supplying two thirds of Eu‑
rope rice [13]. Global rice yield is predicted to decrease by
17% by 2050 under the highest scenario of warming [14].
Zhao et al. estimated that each degree‑Celsius increase in
global mean temperature would reduce global rice yields
by 3.2%, if no speciϐic adaptation strategies were imple‑
mented [15]. Previous studies projected a 7–10% loss in
rice yield per each degree‑Celsius increase [16, 17]. Rice is
a primarily drought‑sensitive plant and water availability
is the most serious constraint to rice production [18]; fu‑
ture droughts are predicted to be more frequent and ex‑
treme [19]. Plant diseases are also projected to be facili‑
tated by climate change by inducing favourable conducive
environmental conditions for new pathogens, whilst ris‑
ing plants sensitivity [20, 21].

Climate change impacts add up with current agri‑
environmental crisis consequent to 20th and 21st cen‑
tury anthropogenic disturbance: the ecosystem services
delivering capacity of land is further impelled because of
climate instability; the impacts and threats to food secu‑
rity other than the climate‑related ones are consequently
widened [3, 21–25]. Crop production adaptation measures
are needed to moderate or avoid harm of the ongoing

climate change or take advantage of beneϐicial opportu‑
nities [7]. Speciϐically, increase in crops adaptive capac‑
ity should be targeted, i.e. “the ability of systems […] to
adjust to potential damage, to take advantage of oppor‑
tunities, or to respond to consequences” [7]. Rice yield
stabilisation throughout the current and projected un‑
stable environment demands on one side to reduce the
adverse consequences of the environmental change and,
on the other, to reduce the impact of biotic stress on
rice (i.e. to enhance rice resistance and resilience ca‑
pacity to environmental instability and to projected envi‑
ronmental changes) [19]. Multi‑spectra strategies both in‑
volving crop cultivar choice and agri‑environmental farm
management choices are needed. Crop diversiϐication
through rotations, the use of stress‑tolerant land races
and locally selected cultivars, weed mechanical control
through green mulching, improved soil management, re‑
duced chemicals, recycling of farm waste into organic fer‑
tilisers, and, generally, organic agriculture practices can
improve the environmental performance of rice produc‑
tion [26, 27] and also rice production adaptive capacity to
climate change [28, 29].

In Europe, the impacts of climate change on rice
yield are not so deeply investigated. Ray et al. study
showed climate variability to be responsible for 13–43%
of rice yield variability in the Mediterranean region; 0–
30% in Po Plain district, where normal rainfall data
showed the most signiϐicant relationship with rice yield
(compared to extreme precipitation, normal and extreme
temperature) [30]. The Mediterranean basin is a hotspot
of expansion of drylands due to the increased frequency
of droughts [31, 32]. This region is facing a progressive
decrease in mean precipitation and an increase in rain‑
fall variability during the dry season [33]; summer climate
variations are themain contributors to aridiϐication [32, 34].
Concerning northern Italy, different studies have already
investigated the impacts of climate change on crop pro‑
duction. Straffelini et al. study [34] reports the ongoing
shift of Northeast Italy climate towards drier conditions,
signiϐicantly threatening rice cultivation and other irri‑
gated crops. Northern Italy Po Plain district faced a signif‑
icant number of drought events since 2000 [35]; 2022 was
an extraordinary dry and high‑temperature year, with
several months of insufϐicient rainfall and record sum‑
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mer high temperatures, which signiϐicantly affected the
entire Po river basin [36]. Such extreme climate conditions
affected agricultural productions too, causing total yield
loss in some areas: rice yield decreased by 30% on aver‑
age [37].

Po Plain district is parallelly currently facing intense
and widespread environmental impacts consequent to
decades of intensive agriculture and industrialisation:
from soil health deterioration [38] to water [39] and air pol‑
lution [40], landscape over‑simpliϐication, natural habitat
loss and fragmentation [41] and consequent alien species
spread [42]. This makes the Po Plain a biodiversity‑loss
hotspot [43–45]. Riceϐield biodiversity is affected too, es‑
pecially where conventional practices are applied [46, 47].
To date, high‑input conventional monoculture represents
the most spread rice production model in Po Plain. The
persistent and prevailing conventional agriculture model,
coupled to intense urbanisation and industrialism, trans‑
formed the entire Po Plain agricultural landscape, impair‑
ing the Po basin regulating processes and land ecosys‑
tem services delivering capacity [48]. This entails higher
vulnerability and lower adaptation capacity to climate
change conditions, exacerbating its impacts. This poses
important challenges for Po Plain next future, demand‑
ing for multi‑functional strategies to be implemented to
reinforce crop production adaptive capacity to climate
change.

Organic rice production is generally characterized
by higher yield variability and higher productivity gaps
under limiting conditions, compared to conventionally
managed rice [49]. Delmotte et al. study on the source
of variability of southern France rice production identi‑
ϐied, among the main factors affecting rice yield, weed
competition (both for conventional and organic farms).
Late sowing was the mostly applied adaptation strategy
for weed control under organic management, but also
variety choice, water irrigation management, crop ro‑
tations and cover crops were identiϐied as valuable al‑
ternatives, to also counterbalance adverse climatic and
soil conditions [49]. Arcieri et al. identiϐied the follow‑
ing key challenges for Italian rice cultivation (mostly
coming from the Po Plain district): optimism resources
use, coping with growing costs of agricultural inputs,
improving small farm production efϐiciency by promot‑

ing ecosystem‑based agriculture, sustainable intensiϐica‑
tion and climate change resilience strategies [12]. The
following practices are identiϐied by Arcieri et al. [12] to
face current Italian rice production issues: improve soil
fertility, multi‑cropping rotations, site‑speciϐic nutrient
management, use of organic fertilizers, integrated pest
management, harvest andpost‑harvestmanagement opti‑
mism, intermittent ϐlooding and alternate wet/dry water‑
saving techniques, information systems supporting irri‑
gation scheduling, farming system diversiϐication to in‑
crease farm incomes, improve family nutrition and en‑
hance climate resilience.

Within this framework, the present study aims to re‑
port andprovide local evidence on the agronomic and eco‑
nomic performance of a rice production model based on
polyculture practices in the western Po Plain (northern
Italy), within a climate change and environmental insta‑
bility framework. The rice polyculture model (POLY) is
founded on high crop diversiϐication and the adoption of
land races, on‑farm resourcemanagement andminimized
or zero external inputs, and farm landscape management
through agroforestry, with a speciϐic focus on agrobiodi‑
versity support. This is achieved by comparing the POLY
model to local organic (ORG) and conventional (CV) mod‑
els, the latter of which is the most prevalent among the
alluvial context under study. The study aims to provide a
valuable addition to existing and future assessments byof‑
fering context‑speciϐic case histories related to a symbolic
period with respect to the climate change issue (i.e. the
2022 extreme climatic event and the ϐive previous years).
The 2022 extreme climatic event was characterized by ex‑
ceptional conditions of aridity and elevated summer tem‑
peratures. This prompts the question of how aridity af‑
fects rice cultivation in the Po Valley, as previously ex‑
amined by other authors in works concerning aridity in
cereal production in other regions of the world [34, 50–52].
Additionally, the investigation explores how the three dis‑
tinct cultivation methods (polyculturae, organic and con‑
ventional) respond to aridity and which method is most
effective. This aspect has not been explored by other re‑
searchers and there is a paucity of evidence in the litera‑
ture. Speciϐically, our study aims at:
(1) comparison of the agronomic (yield) performance

of the three different rice farms management mod‑
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els: POLY, ORG, CV. A particular emphasis will be
placed on the response of the three models to the
2022 climate anomaly that occurred in northern
Italy (an extremely dry and hot year).

(2) we will investigate the potential relationships be‑
tween the three management models’ yield perfor‑
mance and climate change evidence (2018‑2022
data), with the aim of highlighting any potential cli‑
mate change sensitivity and/or adaptive traits ex‑
hibited by speciϐic farm management models.

(3) a comparison of the economic performance of
the three different rice farms management mod‑
els (POLY, ORG, CV) will be made, in order to com‑
plement the agronomic performance analysis with
the analysis of farm sustainability components de‑
pending on different degrees of farming system di‑
versiϐication.

2. Materials and Methods
2.1. Case Studies

Rice polyculture farms (POLY) were selected among
the western Po Plain alluvial district (Vercelli and Pavia
districts, Piedmont and Lombardy regions, northern
Italy) among three different sites: site 1 45°32’53.2”N
8°19’11.0”E (G farm); site 2 45°17’17.4”N 8°39’07.9”E
(C farm); site 3 45°11’54.6”N 8°20’00.8”E (P farm)
(Figure 1). Among site 1, two local rice organic farms
(ORG: A, T farms) and two rice conventional farms (CV: M,
B farms) were selected for agronomic model comparison.

Figure 1. Location of the farms belonging to the three study
sites among the western Po Plain alluvial district (Piedmont
and Lombardy regions). Site 1 (45°32’53.2”N 8°19’11.0”E):
G POLY farm, A and T ORG farms, M and B CV farms; site 2
(45°17’17.4”N 8°39’07.9”E): C POLY farm; site 3 (45°11’54.6”N
8°20’00.8”E): P POLY farm.

Table 1 synthesizes themain traits of each site envi‑
ronmental context (geomorphology, pedology, landscape
ecology [48, 53]) and of each POLY, ORG and CV farm.

Site 1 farms are located among Riss alluvial ter‑
races with predominant ϐine texture Alϐisols with low
permeability and fertility, except for B_CV farm, which
partly stands on Wurm alluvial deposits with Inceptisols
of lower pedogenesis intensity [48, 53]. This ancient geo‑
morphological background makes this land a unicum for
rice qualitative and nutritional traits (denomination pro‑
tected under PDO regulation: “Biella and Vercelli Barag‑
gia rice”) [54]. Site 2 and 3 belong tomore recent ϐluvial de‑
positswith low tomediumpedogenesis, lower soil acidity,
coarser soil texture and consequent low‑to‑medium per‑
meability (i.e. lower suitability to rice cultivation, despite
its deep local historical background as rice‑land) [48, 53].
All sites belong to highly simpliϐied and low diversiϐied
agricultural landscape systems (Table 1) [48]. This is es‑
pecially true for site 2 and 3, where the agricultural ma‑
trix covers 87–89% of the surrounding extra‑local land‑
scape system and forest and semi‑natural components
are strongly reduced and fragmented (5–7%of total extra‑
local landscape surface) [48]. Site 1 shows a slightly better
landscape ecological conϐiguration, thanks to its higher
geomorphological variety which made possible to pre‑
serve a higher portion of natural and semi‑natural compo‑
nents (31% of total extra‑local landscape surface). Land‑
scape diversity andmean biological territorial capacity (a
measure of the landscape ecological meta‑stability traits)
are very low in site 2 and 3 (diversity: 1–1.1; biologi‑
cal territorial capacity: 1.2–1.3 Mcal/ha/yr). Site 1 has
higher landscape diversiϐication (1.7) and biological ter‑
ritorial capacity (2.4 Mcal/ha/yr), but still values are low
if compared tomore balanced and diversiϐied agricultural
landscapes [48]. These landscape ecology traits impair the
life support and regulating functions of the agricultural
landscape, thus weakening the resilience and resistance
capacity of landscape components, and rising the vulner‑
ability of landscape components to environmental and
climate change, with knock‑on effects on food provision‑
ing functions [48]. Hence, study sites represent agricul‑
tural areas currently demanding for agri‑environmental
re‑balancing strategies, such as the one represented by or‑
ganic agriculture and, even more, by a polyculture, highly
diversiϐied, farm management model.
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Table 1. Main traits of each site territorial context (geomorphology, pedology, landscape ecology) and of each POLY (SITE 1:
farm G; SITE 2: farm C; SITE 3: farm P), ORG (SITE 1: farms A, T) and CV (SITE 1: farms M, B) farm (surface, crops, agroforestry
implementation, management model).

POLY farms are distinguished from the ORG ones on:
more widespread crop rotation, polyphyte cover crops,
use of rice land races and/or local cultivars, almost com‑
plete substitution of external inputs (fertilizers, pesti‑
cides, herbicides) with on‑farm resources, agroforestry
andagrobiodiversity‑support practices (Table1). Among

POLY farms, one farm still undergoing complete transi‑
tion to the POLY model is included (site 3, P farm): a
farm portion in still under low‑impact conventional man‑
agement (lower chemicals and soilmanagement intensity
compared to standard conventional farms). G farm (site
1) represents the most consistent POLYmodel implemen‑

308

Site SITE 2 SITE 3 SITE 1
Model POLY ORG CV
Farm C P G A T M B

TE
RR
IT
OR

IA
L
CO
NT

EX
T

GEOMORPH
OLOGY,

PEDOLOGY
[48,53]

ST /WRB CLASSES Luvisols;
Arenosols

Inceptisols;
Entisols Alfisols (ancient terraces); Inceptisols

Alfisols (ancient
terraces);
Inceptisols

Geomorphology Fluvial
terrace

Fluvial
deposits Riss alluvial terrace, Holocene fluvial terrace

Riss alluvial terrace,
Wurm alluvial
deposits

Main soil texture Loamy-sand;
Sandy-loam

Loamy-
coarse;

Loamy-sand
Fine silty Fine silty to loamy-

sand

Development Medium
pedogenesis

Low
pedogenesis Predominant intense pedogenesis Both low and

intense pedogenesis

Permeability Medium-low
permeability

Medium
permeability Predominant surface hydromorphy Mixed high and low

permeability

pH Sub-acid
[5.5–6.5]

Sub-alkaline
to alkaline
[7.4–8.4]

Acid [4.6–5.4] Acid [4.6–5.4] to
sub-acid [5.5–6.5]

Land use capacity IIw
(waterlog)

II (oxygen
availability) III (oxygen availability) ?

LANDSCAPE
ECOLOGY
TRAITS
[41,48]

EXTRA-
LOCAL
SCALE

Matrix Agricultura:
88.6%

Agricultural:
86.7% Agricultural: 60.1%

Forest &
semi-
natural

5.2% 6.7% 30.6%

Artificial 6.3% 6.7% 9.3%
Landscape
diversity 1.0 1.11 1.70

Biological
territorial
capacity

1.17 1.26 2.39

Farm C P G A T M B

FA
RM

S

SURFACE SAU (ha) 47 65 128 65 86 160 300

CROPS

Main annual crops

Rice in
rotation

with millet,
black-eyed
bean, rye,
oat, pea

Rice in
rotation

with barley
and

soyabean

Rice in
rotation

with millet,
black-eyed
bean, rye,

oat

Rice in
rotatio
n with
soyabe
an

Rice in
rotation
with

soyabean,
buckwhea
t, oat

Rice in
rotation
with

soyabean

Rice

Rice land races
and/or local
cultivars

Yes No Yes No Yes No No

Perennial crops Apple

AGROFORE
STRY

In-field
hedgerows and

treelines
No No Yes No No No No

Between field
hedgerows and

treelines
Yes Ongoing

transition Yes

Ongoin
g

transiti
on

Ongoing
transition No No

MANAGEME
NTMODEL

Years since
beginning of activity 7 8 21 21 27 32 39

Years since
conversion to ORG 7 8 21 21 6 / /

Years since
conversion to POLY 7 8 21 / / / /

Completed
conversion Yes Partially Yes Yes Yes / /
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tation, resulting from longer POLY management history
(more than 20 years). The two ORG farms represent typi‑
cal local organic farms traits [27]. The two CV farms repre‑
sent the most widespread local rice management model
and stand for two different degrees of intensiϐication: B
farm is the most intensive, large size, CV model, based on
ricemonoculture for the past forty years, whereasM farm
is lower‑sized and partly includes rice rotation with soy‑
abean.

2.2. Climate Data Collection and Analysis

Daily climate data over thirty years were collected
from regional databases [55, 56], referring to the agri‑
meteorological monitoring station closest to each of the
3 sites (site 1: Albano Vercellese station; site 2: Castello
d’Agogna station; site 3: Tricerro station). If not available,
the minimum available dataset was used (site 2: 1991‑
2022 rainfall data, 1993–2022 temperature data; site 3:
2002–2022 rainfall and temperature data). Daily rainfall
and temperature data (average, minimumandmaximum)
were cleaned of missing data and then used to calculate
the variables shown in Table 2.

A linear trend line was calculated for all variables
to highlight climate trends over the entire period. Sites
were classiϐied on their bioclimate [57, 58] referring to pre‑
existing bioclimate maps based on 1950‑2000 data se‑
ries [59, 60].

For 2018–2022 years, the following additional calcu‑
lations were made:

• Monthly rainfall anomalities: for each year [2018–
2022], difference between total monthly rainfall
and the climatic monthly mean rainfall (MONTHLY
MEAN), compared to the MONTHLY MEAN to get
percentage anomality values

• Monthly mean temperature anomalities: for each
year [2018–2022], difference between monthly
mean of daily temperature and the climatic
monthly mean temperature (MONTHLY MEAN).

In order to compare yield trendswith climate trends,
climate indices were obtained, in Table 3, for the 12
months preceding the rice harvest (September/year be‑
fore harvest to August/year of harvest).

2.3. Agronomic Data Collection and Agro‑
nomic Performance Analysis

Agronomic datawere collected at farm level through
detailed face‑to‑face interviews. Data were collected for
each crop, over 5 years (2018–2022); farm level data
were taken as an average of the reported period. Specif‑
ically, information was gathered on: employed crops
and cultivars, rotations, agroforestry practices, irrigation
(type, water source, frequency, ϐlooded period, water
consumption, fees), soil management (type, depth, fre‑
quency), sowing (type, period, seed dose, seed source,
seed cost: in‑farm seed production cost, seed pur‑
chase cost), cover crops (incidence ‑percentage surface‑
, species, seed dose, seed cost), fertilizers‑pesticides‑
herbicides (incidence, type, source, cost, compliance to
organic agriculture), harvest (date, yield, maximum and
minimum yield during last ten years, fate – sold, in‑farm
re‑use, re‑incorporation to soil‑), post‑harvest (in‑farm
storage cost, in‑farm transformation cost, whole sale and
direct sale ratios and selling prices, residues type, man‑
agement and related costs and selling price), machinery
and labour (total machinery power, fuel and lubricants
consumption, electricity consumption and production, in‑
farm and paid labour units). For 2022, an exceptionally
dry year, additional information was collected on water
reductions due to drought and on the implemented adap‑
tations.

These data allowed a preliminary synthesis on the
main agronomic management traits distinguishing the
different farms and the 3models under study. Agronomic
performance was assessed by using rice yield as indica‑
tor (2018–2022 data). POLY, ORG and CV yields were
compared through ANOVA test (non‑parametric Kruskal‑
Wallis rank test for not normally distributed data) and
post‑hoc test (Mann‑Whitney pairwise test). Their yield
variabilitywas then compared, investigating the inϐluence
of the different employed rice cultivars. Then, the year
mean rice yield trend from 2018 to 2022 were compared
between farms and models, also including other crops
trend (for the ones repeatedly used over the studied time
frame). A comparison was made also with district, re‑
gional and national mean annual yields [61].
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Table 2. Climate variables calculated and taken into account.
Climate Variables Acronym Deϐinition

Total annual rainfall (ANNUAL TOT) sum of daily total rainfall for each year
Mean annual rainfall (ANNUAL MEAN) mean of total annual rainfall over the entire period (about 30 years)
Daily maximum rainfall (DAILY MAX) maximum daily rainfall for each year
Mean daily maximum rainfall (DAILY MAX MEAN) mean of maximum daily rainfall over the entire period (about 30 years)
Number of dry days (DRY DAYS) number of days per year with daily total rainfall lower or equal to 1 mm
Mean annual dry days (MEAN DRY DAYS) mean of number of dry days per year over the entire period (about 30 years)
Monthly mean rainfall (MONTHLY MEAN) Mean of the sum of daily rainfall for each month over the entire period (about 30 years)
Mean annual temperature (ANNUAL MEAN) Mean of each month mean temperature for each year
Minimum temperature annual mean (MIN ANNUAL MEAN) Mean of each month mean minimum temperature for each year
Maximum temperature annual mean (MAX ANNUAL MEAN) Mean of each month mean maximum temperature for each year
Annual absolute maximum temperature (MAX ASS) Maximum of monthly maximum temperature for each year
Annual absolute minimum temperature (MIN ASS) Minimum of monthly minimum temperature for each year
Monthly mean temperature (MONTHLY MEAN) Mean of monthly mean temperature over the entire period (about 30 years)

Table 3. Climate indices calculated for the 12 months preceding the rice harvest.

Index Acronym Deϐinition

Late season months rainfall (P_au) sum of daily rainfall for months 09, 10, 11
Coldest months rainfall (P_wi) sum of daily rainfall for months 12, 01, 02
Mid‑season rainfall (P_sp) sum of daily rainfall for months 03, 04, 05
Hottest months rainfall (P_su) sum of daily rainfall for months 06, 07, 08
Annual rainfall (P_yr) sum of daily rainfall for months 09‑08
Absolute maximum temperature (T_M_abs) absolute maximum temperature value
Late season months mean temperature (T_au) mean of monthly mean temperature for months 09, 10, 11
Coldest months mean temperature (T_wi) mean of monthly mean temperature for months 12, 01, 02
Mid‑season months mean temperature (T_sp) mean of monthly mean temperature for months 03, 04, 05
Hottest months mean temperature (T_su) mean of monthly mean temperature for months 06, 07, 08
Annual mean temperature (T_yr) mean of monthly mean temperature for months 09‑08

2.4. Comparison between Climatic and
Agronomic Data

To check for relationships between 2018–2022 cli‑
mate trend and anomality (12 months prior to rice har‑
vest) and agronomic performance of different manage‑
ment models (annual rice yields of POLY, ORG and CV
farms), we ϐirst checked for normal distribution of cli‑
mate and yield data (Shapiro‑Wilk test) and consequently
run a correlation analysis (Pearson or Spearman rs cor‑
relation coefϐicients, respectively for normally and not‑
normally distributed data) to identify possible signiϐicant
relationships. We then run an ordinary least square re‑
gression analysis on the most inϐluent climate variables
(the ones showing signiϐicant, or close to signiϐicant, cor‑
relationpatternswith yield), with yield as dependent vari‑
able. Reduced Major Axis algorithm (RMA) or Ordinary
Least Square algorithm (LS) were alternatively chosen,
depending on model robustness (p value and coefϐicient
of determination value). 95% bootstrapped conϐidence
intervals were used for RMA algorithm, 95% regression
conϐidence intervals for the LS algorithm (if residuals are

normally distributed).

2.5. Economic Performance Analysis

Farm economic performancewas addressed by com‑
paring the costs and income types composition among
each farm and by computing indicators on the economic
ϐlows and technical and economic indices, as detailed
in Table 4. Indicators choice was based on previous
works focusing on farm sustainability assessment on sim‑
ilar territorial context (already applied on Po Plain or
Italian case studies) [62, 63]. Economic ϐlows indicators
include: gross income (GI), variable costs (VC), gross
margin (GM) and efϐiciency (EF) [62]. Technical and eco‑
nomic indicators include: land use intensity degree (INT),
family working weight (FAM), land mechanization de‑
gree (MEC_SAU) andmechanization intensity (MEC_ULT),
work gross productivity (PROD_WORK) and land gross
productivity (PROD_LAND) [63]. A variant was introduced
in the evaluation of variable costs to better represent real
farm case histories: VC (the original one, including fuels,
lubricants, pesticides, herbicides, fertilisers, and seeds),
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VC2 (also including irrigation water fees, storage costs,
residuesmanagement costs, electricity costs) adVC3 (like
VC2, also including harvest in‑farm transformation costs).

Consequently, gross margin and efϐiciency were calcu‑
lated for these three variants (GM, GM2, GM3; EF, EF2,
EF3).

Table 4. Detail on the applied indicators on economic performance.
ECONOMIC FLOWS

 Indicator name  Acronym Deϐinition Equation  udm Reference

GROSS INCOME GI
Yield of harvested product multiplied by its price
+ income from residuals management + electricity
production income

GI =
∑

incomex euro/yr [62]

VARIABLE COSTS

VC Sum of costsx: fuels, lubricants, pesticides,
herbicides, fertilisers, seeds V C =

(
∑

costx)
GI

× 100 % [62]

VC2
Sum of costsy: fuels, lubricants, pesticides,
herbicides, fertilisers, seeds, irrigation water fees,
storage costs, residues management costs,
electricity

V C =
(
∑

costy)

GI
× 100 % Re‑adapted

from [62]

VC3
Sum of costsz: fuels, lubricants, pesticides,
herbicides, fertilisers, seeds, irrigation water fees,
storage costs, residues management costs,
electricity, harvest in‑farm transformation costs

V C =
(
∑

costz)
GI

× 100 % Re‑adapted
from [62]

ECONOMIC BALANCE (GROSS MARGIN)

GM Difference between gross income and variable
costs (VC) GM = GI−V C

GI
× 100 % [62]

GM2 Difference between gross income and variable
costs (VC2) GM = GI−V C2

GI
× 100 % Re‑adapted

from [62]

GM3 Difference between gross income and variable
costs (VC3) GM = GI−V C3

GI
× 100 % Re‑adapted

from [62]

EFFICIENCY

EF Ratio between gross income and variable costs
(VC) EF = GI

V C
 ‑ [62]

EF2 Ratio between gross income and variable costs
(VC2) EF = GI

V C2
 ‑ Re‑adapted

from [62]

EF3 Ratio between gross income and variable costs
(VC3) EF = GI

V C3
 ‑ Re‑adapted

from [62]

TECHNICAL & ECONOMIC INDICES  

 Indicator name  Acronym Deϐinition Equation  udm Reference

Land use intensity degree INT Ratio between used agricultural surface (SAU)
and total labour units (ULT) INT = SAU

ULT

sau/working
units

[63]

Family working weigth FAM Ratio between family labour units (ULF) and total
labour units (ULT) FAM = ULF

ULT

in‑farm labour
units/paid labour
units

[63]

Land mechanization degree MEC_SAU Ratio between machinery power (KW) and used
agricultural surface (SAU) MECSAU = KW

SAU
  [63]

Mechanization intensity MEC_ULT Ratio between machinery power (KW) and total
labour units (ULT) MECULT = KW

ULT
  [63]

Work gross productivity PROD_WORK Ratio between farm gross income (GI) and total
labour units (ULT) PRODWORK = GI

ULT

Total incomes/
working unit

[63]

Land gross productivity PROD_LAND Ratio between gross saleable production (PLV)
and used agricultural surface (SAU) PRODLAND = GI

SAU

Gross production
to sell/SAU

[63]

3. Results and Discussion

3.1. Climate Change Evidence

3.1.1. Climate Trend [1990–2022]
Table 5 synthetises the main climatic and biocli‑

matic traits of the three sites. Despite being in the same
alluvial district, a climatic gradient is evident between the
three sites. Site 1 shows higher annual rainfall, lower an‑
nual mean temperature and average minimum temper‑
ature, whereas site 2 shows the lowest annual rainfall

(Table 5). Annual mean temperature, mean maximum
and minimum ones do not signiϐicantly differ between
sites 2–3 (Table 5). Figure 2 details the climatic trend
of rainfall (annual total rainfall, daily maximum rainfall,
number of dry days) and temperature (mean annual tem‑
perature, maximum and minimum temperature annual
means) for each year since 1990 for the three sites. Rain‑
fall shows a decreasing trend during last thirty years in
all sites, with great variability between years, the lowest
absolute value registered in 2022; site 3 shows the most
inϐluent decrease ratio (−7.69 trendline slope) (Figure
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2a). Site 2 shows the highest increase in annual dry days
(+2.02 trendline slope), whereas site 1 is almost stable
(−0.002 trendline slope). Daily maximum rainfall trend
does not show signiϐicant increasing and or decreasing
patterns; it highlights a signiϐicant positive anomality in
2020. Annual mean temperature shows an increasing
trend in all sites (site 1: + 0.047; site 2: +0.056; site
3: +0.067 trendline slope), with even steeper increasing

trends in site 1 and2maximumtemperature annualmean
(respectively, +0.071 and +0.076 trendline slope) (Figure
2b). Minimum temperature annual mean increase is in‑
ϐluent too (site 1: +0.031; site 2: +0.042; site 3: +0.061
trendline slope). The registered trend towards dryer and
hotter condition is coherent to the most recent climate‑
change scenarios built for northern Italy [34, 64].

Table 5. Main differences between the 3 sites climate variables and bioclimatic traits [59, 60].
SITE 2 SITE 3 SITE 1

CLIMATE [1990–2022 data]

Annual rainfall
[mm] 668 737 872

Annual mean
Temperature [°C] 13.1 13.2 12.3

Average Maximum
Temperature [°C] 18.6 18.8 18.9
Average Minimum
Temperature [°C] 8.19 8.5 7.0

BIOCLIMATE [1950–2000WorldClim data]
Bioclimate
(variant)

Temperate oceanic
(submediterranean)

Temperate oceanic
(steppic) Temperate oceanic

Bioclimatic belt Lower supratemper‑
ate Lower humid

Lower supratemper‑
ate Upper subhumid

Lower supratemper‑
ate Lower humid

Figure 2. Rainfall and temperature climatic data (1990–2022
data series) for each site (1, 2, 3): (a) total annual rainfall (an‑
nual_tot), daily maximum rainfall (daily_max), number of dry
days (dry_days); (b)mean annual temperature (annual_mean),
maximum temperature annual mean (max_annual_mean),
minimum temperature annual mean (min_annual_mean). Lin‑
ear trend line (dotted line) and equation is reported for all vari‑
ables highlighting climate trends over the entire period.

All sites belong to the same macro‑bioclimate, tem‑
perate oceanic, with some variants: site 2 is temperate
oceanic (submediterranean), site 3 is temperate oceanic
(steppic). All sites belong to the same thermotype, lower
supra‑temperate. The ombrotype slightly changes in site
3 (upper sub‑humid), compared to sites 1–2 who show
higher ombrothermic index values (lower humid hom‑
brotype).

3.1.2. Last Five Years Trend and Anomality
[2018–2022]

Figure 3 reports a detail on rainfall and temper‑
ature data of 2018‑2022 years among the three sites,
with a speciϐic focus on 2022 anomalous behaviour, com‑
pared to each site climatic mean. All sites show a signiϐi‑
cant anomality in 2022monthly rainfall, across almost all
months (except for July in sites 1 and 3). The seasonal
rainfall pattern (spring and autumn peaks) is weakly de‑
tectable in 2022. The strong reduction of winter and
spring rainfall caused knock‑on effects on rice cultivation
(delayed sowing, spread dry sowing, reduced cover crops
development) due to the impaired soil water reserve and
reduced irrigation water availability. Concerning tem‑
perature, 2022 mean monthly temperature exceeds the
climatic mean among all three sites, during almost ev‑
ery month (except for early spring months). The highest
gaps are registered in July and, generally, during summer;
October also showed signiϐicant deviation from climatic
mean. This signiϐicantly raised evapotranspiration pro‑
cesses, hydric deϐicit and heat stress.
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Figure 3. For each site (1, 2, 3): 2018–2022 monthly rainfall
anomality (percentage deviation from the 1990–2022 climate
meanvalues) and2022monthly rainfall trend, compared to the
climate mean monthly values; 2018–2022 monthly tempera‑
ture anomality (percentage deviation from the 1990–2022 cli‑
matemean values) and 2022monthly temperature trend, com‑
pared to the climate mean monthly values.

3.2. Agronomic Performance

3.2.1. Main Agronomic Management Traits
Crop diversiϐication distinguishes POLY and ORG

farms from CV ones: POLY farms mean surface used for
crops other than rice is 40%; 58% in ORG farms; 11% in
CV ones (Figure 4a). P farm (POLY) represents a mixed
model, in that its transition to the POLYmodel is still ongo‑
ing, and 65% of cultivated surface is under conventional
rice production; if excluding P farm, POLY mean other
crops surface rises to 52.5%. These diversiϐied produc‑
tions (OTHER_CROPS) are mostly aimed at on‑farm re‑
sources conservation and external inputs reduction: their
relative weight on total farm income coming from crops
is low, ranging from 14% in POLY farms (19.5% if exclud‑
ing P farm under transition) to 16% in ORG ones (Figure
4b). Table 6 synthetises the main agronomic manage‑
ment traits distinguishing the POLY, ORG and CV farms
(mean values of 2018–2022 data).

The studied 7 farms generally apply continuous
ϐlooding conditions on rice ϐields, but differ in rice rota‑

tions, which are reduced (or absent) in CV farms. Mean ir‑
rigated surface is 63%in POLY farms, 44% in ORG farms,
89% in CV farms, because of lower crop diversiϐication.
Tillage intensity and frequency is higher in CV farms. CV
farms completely depend on off‑farm purchased seeds,
whereas both POLY and ORG farms also rely on seeds
auto‑production (G farm completely relies on the lat‑
ter). Multi‑species cover crops are used only among POLY
and ORG farms, with POLY farms showing higher cover
crops species diversiϐication and incidence (POLY: 82%
of cultivated surface; ORG: 75%). No fertilizers are ap‑
plied among POLY farms, where fertilization is obtained
through cover cropping and greenmanuring practices [27],
except for P farm which is still under transition to POLY
model. ORG farms apply organic fertilizers on about 33%
of cultivated surface, whereas among CV farms 93% of
cultivated surface is fertilized, mainly with non‑organic
fertilizers. POLY farms do not use pesticides or herbi‑
cides (except 60% of P farm cultivated surface, still under
transition, where chemical weed control integrates green
manuring practices); ORG farms apply organic compliant
pesticides among 15% of cultivated surface but no herbi‑
cides; CV farms employ both pesticides and herbicides on
87% of cultivated surface. No residues management oc‑
curs among CV farms, whereas they are re‑incorporated
to soil in POLY and ORG farms (G farm also partially sells
them).

Figure 4. (a) 2018–2022 mean percentage surface of differ‑
ent crop types; (b) 2018–2022 mean income ratio related to
different crop types. Data are reported for each POLY, ORG
and CV farm, also reportingmean values for eachmanagement
model. Organic/polyculture rice: RICE_ORG_mean; conven‑
tional rice: RICE_CV_mean; total rice: RICE_mean; other crops:
OTHER_CROPS_mean.
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Table 6. Comparison of the main agronomic management traits among the studied farms (mean values of 2018‑2022 data):
POLY farms (SITE 1: farm G; SITE 2: farm C; SITE 3: farm P); ORG farms (SITE 1: farms A, T); CV farms (SITE 1: farms M, B).
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SITE 2 SITE 3 SITE 1
POLY ORG CV

CATEGORY DESCR udm C P G A T M B

ROTATIONS
Rice rotations*

R=rice;
C=other crops

yrs R, C, C, R, C, C R, C, R, C, R R, C, R, C R, C, R, C R, C, R, C R, R, R, R, C, C R, R, R, R

IRRIGATION

Rice irrigation
type

continuous
flooding

continuous
flooding

continuou
s flooding

continuous
flooding

continuous
flooding

continuous
flooding

continuous
flooding

Irrigated
surface

%
SAU 57% 87% 44% 38% 49% 78% 100%

TILLAGE

tillage -

minimum
tillage

(partly no
tillage, rarely

tillage)

minimum
tillage

minimum
tillage;
ripper

subsoiling

tillage;
arrowing

tillage, ripper
subsoiling
(completely
substituting
tillage in some
years), leveling
(not all years)

Tillage,
levelling,

arrowing,rip
per

subsoiling

Tillage, levelling,
arrowing
(where row
sowing))

tillage depth cm 10-15 15-20 20 15-18 20 25 18-20
tillage

frequency n./yr 1 / 2 1 2 1 2 4 2

SOWING

rice sowing
type broadcast broadcast broadcast broadcast broadcast

Rows,
partially
broadcast

Rows, broadcast

other crops
sowing type - rows broadcast rows broadcast rows rows rows

seed source autoproducti
on; purchase

purchase;
limited

autoproduc
tion

Autoprod
uction

purchase;
autoproduct

ion

autoproduction;
purchase purchase purchase

COVER
CROPS

incidence* %
SAU 82% 64% 100% 50% 100% 0% 0%

species
composition -

Vicia villosa
Roth, Vicia
sativa L.,
Trifolium
repens L.,
Trifolium
incarnatum
L., Avena
sativa L.,
Brassica
napus L.

Vicia
villosa
Roth,

Trifolium
incarnatum
L., Lolium
perenne L.

Vicia
villosa
Roth,

Brassica
rapa L.,
Secale

cereale L.,
Avena
sativa L.,
Lolium

perenne L.

Lolium
perenne L.,
partly Vicia
villosa Roth

wild weeds
(ricefields);

Lolium perenne
L. (dry crops)

- -

number of
species n. 6 3 5 2 1

FERTILISERS

incidence %
SAU 0% 60% 0% 20% 45% 86% 100%

type -
Mineral
NPK (2
doses/yr)

cornunghia
(only sandy
soils; 1

dose/3 yrs)

manure,
cornunghia Mineral NPK

Cornunghia(1
dose/yr);

Mineral slow-
release NPK (2
doses/yr)

Other
strategies*

Cover crops
green

manuring

Cover
crops
green

manuring

Cover
crops
green

manuring

Cover crops
green

manuring

winter grazing
on cover crops;
soybean green
manuring

BIO compliant Y/N Yes No Yes Yes Yes No No

PESTICIDES

incidence %
SAU 0% 0% 0% 4% 26% 73% 100%

type -

Sulphur,
copper; 1
dose/yr

(fruit trees)

Sulphur Fungicides;
Pesticides

Fungicides;
Pesticides

BIO compliant Y/N Yes Yes No No

HERBICIDES
incidence %

SAU 0% 60% 0% 0% 0% 73% 100%

type 3 doses/yr n.d. n.d.
BIO compliant Y/N No No No

RESIDUES residues fate* -
Re-

incorporated
to soil

Re-
incorporat
ed to soil

Re-
incorpora
ted to soil;

sold

Re-
incorporate
d to soil

Re-incorporated
to soil Unmanaged Unmanaged
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3.2.2. Agronomic (Yield) Performance
[2018–2022]

Considering 2018‑2022 rice yields, POLY and ORG
farms have similarmean rice yields, with lower values for
POLY farms (respectively, 3.9 and 4.3 Mg/ha), whereas
CV farms show signiϐicantly higher values (6.7 Mg/ha)
(Table A1, Appendix A; Figure 5). Organic farms mean
yield is higher than the one detected in previous studies
on the same territorial context (3.7 Mg/ha) [27]; CV farms
mean yield is similar to the ones detected by previous lo‑
cal studies [27, 65] and is the closest to the mean rice yields
of the Vercelli district (6.7 Mg/ha), the regional mean val‑
ues (6.8 Mg/ha) and the national ones (6.5 Mg/ha) [61]
(Figure 5). Signiϐicance of differences between models
is conϐirmed by the Kruskal‑Wallis ANOVA test for equal
medians: data are not normally distributed; p(same) =
2.938x10−16; Mann‑Whitney pairwise test showed signif‑
icant differences between POLY‑CV and ORG‑CV (respec‑
tively: p = 9.588x10−13; p = 1.082x10−11). When separat‑
ing P farm yields (site 3) between the POLY managed cul‑
tivars and the conventionally managed ones, differences
between POLY and ORG farms mean rice yields rise (re‑
spectively, 3.5 and 4.3 Mg/ha) (Table A1, Appendix A)
and difference is signiϐicant (Kruskal‑Wallis ANOVA test:
p(same) = 1.43x10−17; Mann‑Whitney pairwise test be‑
tween POLY‑ORG yields: p = 0.00998).

Figure 5. Rice yield across 2018–2022 years of POLY, ORG and
CV farms, ϐirst by grouping all POLY farms togheter (left side
boxplots); secondly by separating P farm yields between the
POLY managed ones (under POLY group) and the convention‑
ally managed ones (under POLY_CV group) (middle boxplots);
compared to the district, regional and national mean annual
rice yields (right side boxplots).

Generally, 2018–2022 rice yield shows higher vari‑
ability in POLY and ORG farms compared to CV ones (re‑
spectively, σ = 1.65; 1.13; 0.88) (Table A1, Appendix

A; Figure 5), in line with literature evidences [49]. Previ‑
ous studies on organic farms in the same territorial con‑
text detected slightly higher variability values in organic
farms (σ = 1.6) [27]. The detected variability can be linked
to several interacted and interconnected factors, among
which farmer know‑how certainly plays a key role (e.g.
by limiting farm management errors in weed competi‑
tion, one of the major yield variability source), followed
by the optimization capacity of the timely and punctual‑
ity of operations and the controlling capacity on soil seed
bank (depending on soil management, crop rotations and
local agroecosystem characteristics) [27, 49]. Rice variety
choice can also inϐluence weed competition capacity and
yield response to weather instability [27]. In our study,
the employ of a diversiϐied set of cultivars among POLY,
ORG and CV farms showed different responses to the di‑
verse years’ conditions (different intra‑cultivar variabil‑
ity) (Figure 6), which might result in higher yield unpre‑
dictability but also in higher yield insurance thanks to
the multiple responses offered by a diversiϐied set of cul‑
tivars. Figure 6 reports a selection of 2018–2022 yield
values for those cultivars being repeated at least 4 con‑
secutive years during the studied time frame. For in‑
stance, Rosa Marchetti cultivar (a local traditional land
race introduced in 1972) shows the highest variability
both under POLY and ORG management, ranging from
1.7 to 7.3 Mg/ha (mean: 4.3 Mg/ha). Among the culti‑
vars cultivated under POLYmodel, Dellarole, Chinese and
Bertone are ancient land races of conservation interest:
intra‑cultivar variability is lower, especially for Dellarole
and Bertone (the latter also showing the lowest yields);
Chinese shows a more variable behaviour. Carnaroli, a
local cultivar selected in 1939–1945, also shows a more
stable behaviour across years; the same is observed for
Cammeo variety, whose variability is intermediate (with
a signiϐicant increase shifting from ORG management to
the CV one).

We further investigated the mean year rice yield
trend during 2018–2022 time frame, to check for pos‑
sible difference in yield responses to climate instabil‑
ity, depending on farm management model (Figure 7a).
Regional and national rice yields were signiϐicantly im‑
pacted by 2022 climate anomality (respectively,−7%and
−15%, compared to 2018–2021 mean) (Figure 7); dis‑
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trict levelmeanyields remainedalmost stable (−4%). Dif‑
ferently, POLY farms showed a mean stable trend of rice
yields across 2018–2022, with a slight increase in 2022,
compared to previous year (P farm conventionally man‑
aged cultivars are excluded fromPOLYmean yield calcula‑
tion) (Figure 7a). Nonetheless, separated behaviours are
detected among the three POLY farms: G farm (the one im‑
plementing the POLY model more strictly and long‑term;
seeTable 1) shows a clear increase inmean rice yields go‑
ing from2020 to2021 to2022 (2022: +21%, compared to
2018–2021 mean). This suggests an increased adaptabil‑
ity capacity to climate anomality of the farm model. Dif‑
ferently, C farm shows a clear decrease in 2022 (−35%),
which was balanced by other crops higher yields (millet
+19%, black‑eyed bean +86%). This highlights the role
of crop diversiϐication in building a robust farm adapta‑
tion strategy. P farm polyculture ϐields mean yield show
a clear increase in 2022 (+22%), following the low‑yield
previous year and exceeding all yields of previous years
(absence of continuity of other crops cultivation over the
studied time frame did not allow to check for their yield
trend). Orlando et al. 2020 studyonorganic farmsbelong‑
ing to the same context highlighted how farmers know‑
how is themost critical factor inϐluencing yield variability,
reϐlecting the need for site‑speciϐic agroecological prac‑
tices customization [27]. Among POLY farms, G is the old‑
est in terms of conversion to the POLY model (more then
20 years), and this certainly contributed to site‑speciϐic
POLYpractices tuning (i.e., cultivars selection, cover crops
and green manuring management, timely operations set‑
ting) coupled to soil health promotion depending on long‑
term cumulative processes [27].

With regard to site 1 (Figure 7b), ORG farms
showed a quite stable (slight decrease) mean rice yield
in 2022, with different performances of the two farms:
A farm clearly increases (+20%), T farm slightly de‑
creases (−6%), coupled to an increase in buckwheat yield
(+75%). POLY and ORG farms 2022 mean rice yields are
similar (respectively, 4.2 Mg/ha; 4.4 Mg/ha). Differently,
CV farms experienced adecrease in 2022mean rice yields,
in line with regional and national trends (M: 5.1 Mg/ha,
compared to 6.1 Mg/ha average yield; B: 6.9 Mg/ha, com‑
pared to 7.1 Mg/ha average yield). Other crops did not
balance such loss: M farm2022 soyabean yield decreased

too, compared to previous years (Figure 7b).

Figure 6. Selection of 2018‑2022 yield values for those
cultivars being repeated at least 4 consecutive years during
the studied time frame, grouped for farm management mod‑
els (POLY, ORG, CV). Included cultivars: Dell=Dellarole;
Chin=Chinese; Ros=Rosa Marchetti; Bert=Bertone;
Carn=Carnaroli; Camm=Cammeo; Cent=Centauro;
Ron=Ronaldo; CL28=CL28; Cerer=Cerere.

Figure 7. 2018‑2022 rice and other crops yield trends of:
(a) POLY farms (site 1 – POLY_1_G), site 2 ‑POLY_2_C, site
3 ‑ POLY_3_P); (b) site 1 POLY (POLY_1_G), ORG (ORG_1_A,
ORG_1_T) and CV (CV_1_M, CV_1_B) farms. In each graph, dis‑
trict, regional and national mean rice yield is reported.

3.3. Farms Response to Climate Change

3.3.1. Agricultural PracticesAdaptations to
Climate Anomality (2018–2022)

Table7 resumes the adaptationon agricultural prac‑
tices experienced by the studied farms, in consequence
to 2022 climate anomality. Water sources scarcity was
experienced by all farms, even though the access to pri‑
vate pit and reservoirs, added to consortium water, was
a winning strategy, in that water provisioning was less af‑
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fected (see C farm and ORG farms, Table 7). Among site
1, G POLY farm and the CV ones experienced the highest
irrigation water shortage (−50%), ORG farms had lower
shortages (−30%). All farms (except A farm) turned con‑

tinuous ϐlooding conditions to alternate ϐlooding and dry‑
ing ones due towater scarcity, with a noticeable reduction
on rice ϐield ϐlooding length.

Table 7. Synthesis on the agricultural practice adaptations experienced by POLY, ORG and CV farms in consequence to 2022
climate anomality (X: Yes/applied; <: reduction in 2022; >: increase in 2022; ≈:no signiϐicant changes in 2022; n.d.: not deter‑
mined).

3.3.2. Yields Trends versus Climate Trends
Figure A1 (Appendix A) reports 2018‑2022 trends

of the rainfall and temperature variables selected to rep‑
resent the 12months prior to rice harvesting among each
site. Table 8 reports the results of correlation analysis
run between each farm (site 1, 2, 3) and the climate vari‑
ables. Only CV farms (M, B) registered signiϐicant correla‑
tion patterns. Both CV farms rice yields are strongly pos‑
itively correlated to total rainfall of the 12 months prior
to rice harvest (P_yr). That is, lower total rainfall tended
to impair rice yields in CV farm. This relation is not found
in POLY and ORG farms; the ones showing higher correla‑
tion coefϐicients (POLY_G and ORG_A farms) show an op‑
posite trend (higher rice yield with lower P_yr), but this
relationship is not signiϐicant (respectively, p(uncorr) =
0.24;0.50), suggesting other factors also contributed to
higher 2022 rice yields (see Figure 7).

A similar pattern is evidenced for yield response
to mean temperature of the hottest months (T_su): CV
farms (B, M) are the only ones showing a signiϐicant, neg‑
ative, correlation patterns, testifying for a dependence of
rice yields on temperature behaviour (lower rice yield
with higher mean temperature in the hottest months of
the year). This dependence is not signiϐicant for POLY
and ORG farms, but still POLY_G and ORG_A farms show

the highest positive correlation coefϐicients, reϐlecting a
higher adaptation capacity to higher mean temperatures
in the hottest months. POLY_C and ORG_T farms show
low and not signiϐicant correlation patterns. The follow‑
ing additional patterns are evidenced, although not signif‑
icant from a statistical point of view and hence demand‑
ing further investigation: generally, POLY and ORG farms
shownegative correlation patterns to total rainfall during
late season (P_au), coldest season (P_wi) and mid‑season
(P_sp) months, suggesting a lower sensitivity to rainfall
shortage compared to CV farms; differently, rainfall short‑
age in the hottest months (P_su) is related to lower rice
yields independently from farm management model, but
correlation is low and this doesn’t allow any inference;
all farms show negative correlation coefϐicients to abso‑
lute maximum temperature; higher temperature in the
hottest months (T_su) seems to have lower impact on
POLY_G and ORG_A farms yields.

The most relevant patterns were further investi‑
gated through ordinary least square regression of farm
mean year yield values as dependent variable (Table 9,
Figure 8, Figure A2 Appendix A): P_sp, P_yr and T_su
showed few signiϐicant relationships with sound model
descriptive capacity (i.e. with coefϐicient of variation
r2>0.6). CV farms yield positive relationship with P_sp
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Time frame USUAL [2018–2021] 2022

Sites SITES 2-3 SITE 1 - ROVASENDA
FARMS SITES 2-3 SITE 1 - ROVASENDA FARMS

Model POLY ORG CV POLY ORG CV
Farm C P G A T M B C P G A T M B

WATER SOURCES

rivers/consortium ditches X X X X X < < < < <
private pit/floodgate X X ≈ ≈ > ≈

consortium pit X ≈
dike X X X < > >

private reservoir X >

WATER USE WATER SHORTAGE -10% X -50% -30% -30% -50% -50%
FLOODING LENGHT (months) 3.5 3 2.5 2 3.5 4 n.d. 3 1.5 1.5 2 2.5 2.5 n.d.

IRRIGATION
TYPE

continuous flooding X X X X X X X X X
alternate flooding and drying X X X X X X

YIELDS
Rice trend ≈ ≈ > ≈ ≈ ≈ ≈ < > > < < < <

Other crops trend > ≈ ≈ n.d
. ≈ < > n.d. > n.d. > <
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Table 8. Correlation analysis results between mean year rice yields and the rainfall and temperature variables representing
the 12 months prior to rice harvesting: late season months rainfall (P_au); coldest months rainfall (P_wi); mid‑season rainfall
(P_sp); hottest months rainfall (P_su); annual rainfall (P_yr); absolute maximum temperature (T_M_abs); late season months
mean temperature (T_au); coldest months mean temperature (T_wi); mid‑season months mean temperature (T_sp); hottest
months mean temperature (T_su); annual mean temperature (T_yr). *: p(uncorr)≤0.05; **: p(uncorr)≤0.01.

Rainfall Temperature

SITE MODEL FARM Correlation coefϐicient P_au P_wi P_sp P_su P_yr T_M_abs T_au T_wi T_sp T_su T_yr
2 POLY C Linear r (Pearson) 0.43 0.48 0.73 −0.06 0.36 −0.72 0.21 −0.02 −0.10 −0.26 −0.48
2 POLY C p(uncorr) 0.4738 0.4118 0.1653 0.9224 0.5522 0.1717 0.7300 0.9730 0.8702 0.6756 0.4157
3 POLY P Linear r (Pearson) −0.63 −0.45 −0.20 0.08 −0.26 −0.47 0.29 0.26 0.94 0.30 0.63
3 POLY P p(uncorr) 0.3720 0.5485 0.7954 0.9249 0.7416 0.5332 0.7103 0.7393 0.0551 0.7026 0.3669
1 POLY G Linear r (Pearson) −0.78 −0.06 −0.73 0.35 −0.65 −0.23 0.30 0.01 −0.07 0.46 −0.36
1 POLY G p(uncorr) 0.1176 0.9197 0.1633 0.5670 0.2362 0.7118 0.6298 0.9812 0.9099 0.4370 0.5512
1 ORG A Spearman rs −0.89 −0.22 −0.89 0.34 −0.45 −0.45 0.11 0.11 −0.11 0.45 −0.11
1 ORG A p(uncorr) 0.1000 0.8000 0.1000 0.6000 0.5000 0.5000 1.0000 1.0000 1.0000 0.5000 1.0000
1 ORG T Linear r (Pearson) −0.13 −0.02 0.35 0.11 0.27 −0.41 0.23 0.57 0.09 −0.15 −0.80
1 ORG T p(uncorr) 0.8370 0.9777 0.5663 0.8643 0.6598 0.4965 0.7149 0.3131 0.8837 0.8097 0.1039
1 CV M Spearman rs 0.10 0.50 0.50 0.40 1.00 −0.60 −0.70 0.80 −0.30 −0.90 0.00
1 CV M p(uncorr) 0.9500 0.4500 0.4500 0.5167 0.0167* 0.2917 0.1833 0.1333 0.6000 0.0500* 1.0000
1 CV B Linear r (Pearson) 0.33 0.63 0.08 0.21 0.88 −0.58 −0.83 0.64 −0.57 −0.98 −0.29
1 CV B p(uncorr) 0.5894 0.2502 0.8969 0.7346 0.0472* 0.3090 0.0819 0.2400 0.3147 0.0038** 0.6391

and P_yr was conϐirmed but only P_yr model was signif‑
icant and with reliable descriptive capacity for both CV
farms (r2=[0.74–0.78]). This conϐirms the limited adap‑
tation capacity of CV yields to rainfall shortage, the most
inϐluencing climate factor on rice yield for Po Plain dis‑
trict, as identiϐied by Ray et al. study [30]. Considering
the other site 1 farms, both POLY_G and ORG_A showed
opposite P_sp and P_yr relationships to yields (negative
slope of regression line): models are partially signiϐicant
(respectively: p(slope)=0.086; 0.028) and have medium
to high descriptive capacity (respectively, r2=0.53;0.81).
ORG_T farm shows intermediate, not signiϐicant, patterns,
suggesting a stronger dependence on factors others then
rainfall. Concerning the hottest months temperature
(T_su) inϐluence on rice yields, still CV farms show a
clear negative relationship, with higher T_su values be‑
ing related to lower CV_M and CV_B yields (respectively,
p(slope)=0.0595; 0.0038; and r2=0.66; 0.96). No signiϐi‑
cant regression models are found for the other farms, but
still POLY_GandORG_Ashowoppositepatterns compared
to CV farms, suggesting lower impacts on yields of higher
T_su, if compared to CV farms. Still ORG_T farm shows in‑
termediate (not signiϐicant) patterns, as well as POLY_C
and POLY_P farms.

3.4. Economic Performance

The business structure of POLY, ORG and CV farms
varies signiϐicantly, depending on different cost types,
incomes diversiϐication and selling strategies (ratio of

wholesale, direct sale, unsold) (Figure 9a); this inϐlu‑
ences the economic performance of the three manage‑
ment models, which only partly depends on yields. In
POLY farms (excluding P farm, still under transition) seed
production costs are partly substituted by seed auto‑
production costs (from 14% to 16% of total costs), and
a portion varying from 7% to 18% of total costs is cov‑
ered by cover crops seeds costs, which represent an agri‑
environmental investment on farm natural capital (soil
health). Parallelly, fertilizers, pesticides and herbicides
costs are null in POLY farms (excluding P farm, which rep‑
resent a mixed strategy, with 12% of costs covering her‑
bicides purchase). Differently, ORG farms invest from 2%
to 12% in fertilizers, with one farm also covering a 5% of
pesticides costs. In CV farms, fertilizers, pesticides and
herbicides cover from 45% to 60% of total costs (higher
than P farm, which covers 35% of total costs for external
inputs). Fuel and lubricants costs portion do not signiϐi‑
cantly change between the three models (with the excep‑
tion of A ORG farm). Incomes mainly consist in crop sell‑
ing; among POLY farm, a portion is also made of electric‑
ity production and crop residues selling (G farm, which
represents the most diversiϐied business structure). The
ratio of direct selling (absent in CV farms and in the P
one) varies from 24% to 88% in POLY farms, from 30%
to 70% in ORG ones. An unsold portion is reported in T
ORG farm, representing yields occasionally re‑adapted to
agri‑environmental functions (soil improvement through
crop residues reincorporation to soil).
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Table 9. Results of Ordinary Least Square regression run on farm mean year yield values as dependent variables and sum‑
mer mean temperature (T_su), spring total rainfall (P_sp) and total year rainfall (P_yr) as independent variables. In bold:
p(slope)<0.05; r2>0.6. *: p(uncorr)≤0.05; **: p(uncorr)≤0.01.

REGRESSION RESIDUALS

SITE MODEL FARM CLIMATE
VARIABLE Slope a Std.

error a
Intercept

b
Std.

error b
p

(slope) r2 p (no pos.
Autocorr.)

p
(homoskedasticity)

Shapiro‑
Wilk W

p
(normal)

2 POLY C

P_sp

0.010 0.004 2.39 0.761 0.0864 0.53 0.9946 0.7180 0.94 0.648
3 POLY P −0.010 0.007 7.33 1.159 0.2854 0.04 1.0000 0.4274 0.93 0.630
1 POLY G −0.003 0.001 3.32 0.272 0.0857 0.53 0.3320 0.0392 0.91 0.479
1 ORG A −0.004 0.001 4.57 0.209 0.0282* 0.81 0.5715 0.0636 0.98 0.939
1 ORG T 0.003 0.002 4.10 0.359 0.1619 0.12 0.4610 0.3453 0.98 0.950
1 CV M 0.005 0.003 5.09 0.580 0.1342 0.28 0.4943 0.8725 0.98 0.947
1 CV B 0.001 0.001 6.83 0.188 0.1806 0.01 0.1557 0.4573 0.96 0.826

2 POLY C

P_yr

0.006 0.003 0.52 2.002 0.1604 0.13 0.8196 0.0365 0.86 0.220
3 POLY P −0.004 0.003 8.66 1.997 0.2808 0.07 1.0000 0.1275 0.90 0.392
1 POLY G −0.002 0.001 4.27 0.701 0.1073 0.42 0.6067 0.9243 0.99 0.968
1 ORG A −0.003 0.001 5.73 0.973 0.1370 0.26 0.3185 0.5433 0.94 0.664
1 ORG T 0.002 0.001 3.21 0.842 0.1698 0.07 0.5618 0.1329 0.96 0.813
1 CV M 0.004 0.001 3.48 0.793 0.0417* 0.74 0.8716 0.5896 0.90 0.383
1 CV B 0.001 0.000 6.40 0.195 0.0345* 0.78 1.0000 0.1347 0.87 0.247

2 POLY C

T_su

−1.030 0.575 29.72 14.287 0.1709 0.07 0.2441 0.6966 0.92 0.537
3 POLY P 0.926 0.625 −16.08 14.797 0.2767 0.09 1.0000 0.3361 0.86 0.236
1 POLY G 0.409 0.210 −6.71 4.828 0.1464 0.21 0.3555 0.3920 0.89 0.361
1 ORG A 0.502 0.279 −7.74 6.421 0.1699 0.07 0.2113 0.5746 0.95 0.758
1 ORG T −0.386 0.220 13.56 5.069 0.1781 0.02 0.4169 0.8982 0.97 0.896
1 CV M −0.698 0.236 22.19 5.420 0.0595 0.66 0.1123 0.1530 0.88 0.322
1 CV B −0.181 0.022 11.26 0.508 0.0038** 0.96 0.9160 0.7080 0.53 0.271

Figure 8. Site 1 G POLY farm and CV farms (M, B): Ordi‑
nary Least Squares Regression run on mean year rice yield
(2018–2022) as dependent variable; summer mean tempera‑
ture (T_su), spring total rainfall (P_sp) and total year rainfall
(P_yr) as independent variables. RMA=Reduced Major Axis al‑
gorithm; LS=OrdinaryLeast Square algorithm; green line=95%
bootstrapped conϐidence intervals (N=1999); blue line=95%
regression conϐidence intervals; *=p<0.05; **=p<0.01.

Considering site 1 data, the ratio of variable costs
(VC1: fuels, lubricants, pesticides, herbicides, fertilisers,
seeds) is lower in POLY model, and increases from ORG
to CV model (Figure 9b). Site 1 and 2 POLY farms sim‑
ilarly show low values, whereas the mixed P farm (site
3) is close to ORG farms (site 1) values. When consid‑
ering the total variety of costs covered by the diversi‑

ϐied POLY and ORG models (VC3: VC1 costs plus irriga‑
tionwater fees, storage costs, residuesmanagement costs,
electricity, harvest in‑farm transformation costs), POLY
model still shows the best performance (lower costs ra‑
tio), whereas ORG farms costs exceed the CV model ones
due to the high ratio of in‑farm transformation costs (not
included in the intermediate VC2). The gross margin in‑
dicator (GM1) reϐlects the higher efϐiciency of the POLY
model, both among site 1 farms and when including site
2 POLY farm. P farm (site 3) has a similar performance
to the ORG farms; CV farms have the lowest GM1 ratio
(Figure 9b). The same pattern (with lowered differences
between models) is found when considering the total va‑
riety of costs covered by the diversiϐied POLY and ORG
models (GM2 and GM3, the latter also including harvest
in‑farm transformation costs), with the only difference
of ORG model showing lower performance than the CV
one in GM3 due to in‑farm transformation costs. The ef‑
ϐiciency indicator (EF) reϐlects the same patterns (Figure
9b). Among site 1, the farm economic efϐiciency (EF1: ra‑
tio between gross income and variable costs) in the high‑
est in POLYmodel, alsowhen considering the total variety
of costs (EF2; EF3). A decreasing trend is highlighted go‑
ing from POLY to ORG to CV. POLY mean values (sites 1,2)
have the highest EF1‑EF2‑EF3 values too, which decrease
in the farm P (site 3) POLY farmmixedmodel. ORGmodel
efϐiciency decreases when considering the total variety of
costs (EF3: ORG values lower than CV ones).
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Figure 9. Results on the economic performance indicators.
(a) cost types, income types and selling types ratio. (b) Eco‑
nomic ϐlows indicators: variable costs (VC1, VC2), Efϐiciency
(EF1, EF2), Gross margin (GM1, GM2); technical and economic
indicators: land gross production (PLV/SAU), work gross pro‑
ductivity (RTA/ULT), land mechanisation degree (KW/SAU),
Mechanisation intensity (KW/ULT), land use intensity degree
(SAU/ULT), family working weight (ULF/ULT).

The technical and economic indices show a higher
performance, among site 1, of the POLY model land
gross production (PLV/SAU; €/ha), whereas the work
gross productivity (RTA/ULT; €/working unit) is the
highest in CV model, followed by POLY and then ORG
(Figure 9b). Site 2 C POLY farm lowers the POLY mean
land gross production (i.e., a signiϐicant variability is de‑
tected between POLY farms). Landmechanisation degree
(kW/SAU; kW/ha) andmechanisation intensity (kW/ULT;
kW/working unit) are the highest in CV model and the
lowest in POLYmodel, reϐlecting the lowerdependence on
machinery of the POLYmodel (less treatments and lighter

soil management). Land use intensity degree (SAU/ULT;
ha/working unit) is the highest in the wider scale and
highly mechanized CV model, whereas family working
weight (ULF/ULT; in‑farm working units/off‑farm work‑
ing units) clearly distinguishes the POLY model from the
other ones, which rely the most on in‑farm working units
(Figure 9b).

These data offer a synthetic overview on the sustain‑
ability components of the POLY model, compared to ORG
and CV ones, highlighting possible pathways sustaining
the economic balance of such a diversiϐied farm manage‑
ment model, which relies on investments on farm natu‑
ral capital which are sustained thanks to higher business
model efϐiciency (higher land proϐitability), based on re‑
ducedoff‑farmresources use (external inputs,machinery‑
related costs), in‑farm resources valorisation, and high‑
quality products. Such a businessmodel does not provide
increased land productivity (yield/ha), but whilst guar‑
anteeing a farm economic viability it addresses pivotal
agri‑environmental issues which deal with medium‑long
term food supply securing through the capacity to miti‑
gate and adapt to the changing climate and environmen‑
tal conditions. In this analysis, we purposely excluded ex‑
ternal funding (CAP, rural development program, etc.), in
that our aimwas to speciϐically address in‑farm economic
sustainability components of crop production, to comple‑
ment the assessment on adaptation capacity to climate
change of the three studied farm models. Obviously, this
analysis excludes wider investments on farm natural cap‑
ital (such as agroforestry and landscape featuresmanage‑
ment), which are generally covered by public funding.

4. Conclusions
Our study, despite being time and space limited

(Po Plain, western northern Italy), complements the in‑
building knowledge framework on the possible role of the
organic and polyculture rice farm management in build‑
ing adaptive strategies for climate change. Despite the sig‑
niϐicantly lower absolute yields, compared to the conven‑
tional ones, ORG and POLY farms showed a better adapta‑
tion capacity to the 2022 extreme climate event. Climate
change projections forecast an increase in mean temper‑
ature and a decrease in rainfall for the studied region by
2050 [34, 35], intensifying current trends, which were con‑
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ϐirmed among the studied sites. In the Po Plain, projected
climate change impacts will be strictly interweaved with
the ongoing environmental crisis, exacerbating the cur‑
rent impairment of agricultural land ecosystem services
delivering capacity. This raises the need formulti‑spectra
solutions from the agricultural sector. Organic agricul‑
ture and, further more, integrated farm models targeting
multiple ecosystem services, such as the POLY model [48],
can play a major role in balancing such impacts, whilst
guaranteeing farm economic sustainability. Our study tes‑
tiϐied for a positive response of POLY model to weather
negative trends and extreme climate events (2022 arid‑
ity and extreme high temperature), highlighting the vari‑
able response of different cultivars and the role of crop
and cultivar diversiϐication (which acts as an insurance
towards climate unpredictability). Such traits were not
recognized on CV farms, suggesting a higher dependence
on weather instability. This was also conϐirmed by yields
regression on 2018–2022 climate data, which highlighted
a signiϐicant positive relation between total precipitation
of the 12 months before harvest (CV yields decreasing
with rainfall shortage); and a signiϐicant negative rela‑
tion between summer mean temperature (CV yields be‑
ing signiϐicantly affected by summer mean temperature
increase). This relation was not signiϐicant when consid‑
ering POLY or ORG yields, reϐlecting a lower sensitivity
to climate instability of these farm management models,
compared to the CV ones. Even if not signiϐicant from a
statistical point of view, the opposite trend detected for G
farm is illustrative. Indeed, G farm is the one managed
under POLY model for the longest term, and it showed
increasing mean rice yields with decreasing annual rain‑
fall and increasing mean summer temperature. From an
economic perspective, POLY farms showed best perfor‑
mance, when considering economic ϐlows efϐiciency indi‑
cators, thanks to the business structure based on lower
machinery and external inputs costs, in‑farm resources
valorisation, higher incomes diversiϐication and mixed
selling strategies (direct sale/wholesale ratio). These
business strategies can complement and balance the in‑
vestment on natural capital associated to the POLYmodel
(agri‑environmental practices based on the support of the
health of the agroecosystem health, its agrobiodiversity,
and soil health), which leads to lower yields but paral‑

lelly addresses social and economic issues of public do‑
main (i.e., the agricultural land capacity to mitigate and
adapt to the changing climate and environmental condi‑
tions and consequently to long‑term delivering ecosys‑
tem services to the human society). Obviously, POLY and
ORG farms performance could not sustain current rice
production demand for the Po Plain basin, due to lower
absolute yield per surface unit. Nonetheless, they should
bepart of an integrated strategy to parallelly address envi‑
ronmental and climate change related impacts. The here‑
presented study offered some new context‑speciϐic high‑
lights on such roles and might positively be integrated by
wider‑scale assessments, involvingmore farms belonging
to similar territorial contexts.
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Appendix A
Table A1. Descriptive statistics of yield values (2018–2022) of POLY (site 1, 2, 3), ORG (site 1) and CV (site 1) farms; ϐirst by
grouping all POLY farms values (G, C, P) and then by separating the values of the P POLY farm conventionally managed ϐields,
partly still under transition to the POLY model (POLY_CV).

ALL POLY FARMS GROUPED (G, C, P) SEPARATED POLY FARM UNDER TRANSITION (P_CV)

POLY ORG CV POLY POLY_CV ORG CV
N 49 27 67 41 8 27 67
Min 0.68 2.18 4.45 0.68 1.73 2.18 4.45
Max 7.76 6.25 9.10 7.30 7.76 6.25 9.10
Mean 3.90 4.35 6.70 3.50 5.96 4.35 6.70

Standard
error

0.27 0.22 0.11 0.26 0.65 0.22 0.11

Variance 3.61 1.27 0.77 2.72 3.42 1.27 0.77
Standard
deviation

1.90 1.13 0.88 1.65 1.85 1.13 0.88

Median 3.50 4.20 6.80 3.00 6.62 4.20 6.80
25 percentil 2.43 3.32 6.20 2.26 5.45 3.32 6.20
75 percentil 5.78 5.38 7.50 4.32 6.80 5.38 7.50
Skewness 0.42 −0.06 −0.34 0.68 −2.06 −0.06 −0.34
Kurtosis −1.05 −1.08 0.29 −0.32 4.80 −1.08 0.29

Figure 10. 2018–2022 trends of the rainfall and temperature variables selected to represent the 12 months prior to rice har‑
vesting: late season months rainfall (P_au); coldest months rainfall (P_wi); mid‑season rainfall (P_sp); hottest months rainfall
(P_su); annual rainfall (P_yr); absolute maximum temperature (T_M_abs); late season months mean temperature (T_au); cold‑
est months mean temperature (T_wi); mid‑seasonmonths mean temperature (T_sp); hottest months mean temperature (T_su);
annual mean temperature (T_yr).
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Figure 11. Ordinary Least Squares Regression run on POLY (C, P, G) and ORG (A, T) farms mean year rice yield (2018‑2022) as
dependent variable, summer mean temperature (T_su), spring total rainfall (P_sp) and total year rainfall (P_yr) as independent
variables. RMA=ReducedMajorAxis algorithm; LS=Ordinary Least Square algorithm; green line=95%bootstrapped conϐidence
intervals (N=1999); blue line= 95% regression conϐidence intervals; *=p<0.05.
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